Page 58 - Security Today, September/October 2021
P. 58

“All of these devices must be integrated through a robust network that provides real-time status and control of the entire system.”
to a control station, which in turn connects to low-voltage power transformers that energize locks or change their states. Many of these connections traditionally use wireline technologies, such as PoE, which provides control signals and power to a gateway controller located up to a maximum of 100 meters away. Some access control systems use a hybrid distribution network of PoE and RS-485 cables to reach proprietary access points connecting to wireless smart locks on the doors of nearby rooms.
Network and security system providers serving commercial buildings are increasingly turning to wireless technology as an alternative to wireline when it comes to scaling the access control system and adding new devices or rerouting existing network connections. Wireless connectivity makes it easier to expand or upgrade these systems without the expense and hassle of running new cables to often hard-to-reach places.
Wireless protocol options include those operating at 2.4 GHz or sub-GHz frequencies and those that support point-to-point, star and mesh network configurations at various power levels, data rates and ranges. The challenge for developers is to find a wireless “sweet spot” that minimizes system cost and complexity without compromising coverage, performance, latency, security or energy efficiency.
Wi-Fi HaLow can help simplify enterprise access control systems by reducing the costs of security network infrastructure, as well as the time and expense of cable installation. The protocol’s energy efficiency helps reduce maintenance costs by minimizing the frequency of battery changes for IoT devices, and its fast data rates and low latency also streamline over-the-air (OTA) firmware updates. Imagine a scenario without HaLow where hundreds of hotel room door locks require a security firmware patch to be loaded by going door by door.
In addition, Wi-Fi HaLow uses a simplified star network capable of connecting large numbers of wireless sensors, health compliance systems and door locks without the need for intermediary proprietary controllers or sub-gateways to connect to the Internet. The access control network can be as simple as a Wi-Fi HaLow AP connected to a single PoE cable on each floor of a building, enabling each lock to operate as a locally controlled or cloud-based device.
Wi-Fi HaLow can also serve as a backhaul network to replace the tangle of low-speed cables running between the backbone network and clusters of connected devices. When an IT administrator needs to add new devices to a wireline network, installing or rerouting PoE and RS-485 cables can drive up labor and materials cost. Whether adding video, thermal imaging or other multi-factor authentication capabilities to a wireless smart lock, Wi-Fi HaLow is fully capable of handling the task with greater ease and at lower cost than upgrading wireline networks.
With its long-distance sub-GHz signal reach (up to 1 km),
the benefits of Wi-Fi HaLow can also extend well beyond the interior of a building to control peripheral access points outside at the edge of the property. The protocol can connect multiple sensing devices, such as motion detectors and proximity sensors that provide early warning of approaching threats, as well as thermal imaging and facial recognition systems that help ensure the health of a building’s occupants. Other long-range wireless networks such as LoRa and Sigfox can only support very low data rates for small packets of data.
Wi-Fi HaLow solves coverage and range issues with a single, simplified standard. For example, one Wi-Fi HaLow AP can support up to 8,191 devices, more than the number of rooms in the world’s largest hotels. The sub-1 GHz RF signals can penetrate walls, doors, windows, ceilings, floors and other obstacles. Wi-Fi HaLow signals can extend farther than existing versions of Wi- Fi and other short-range wireless standards, with ranges that can reach devices that would normally require costly wireline connections. Because it is part of the IEEE 802.11 standard, a Wi- Fi HaLow network can also coexist with Wi-Fi 4, Wi-Fi 5 and Wi- Fi 6 networks without impacting RF performance. Wi-Fi HaLow is also an inherently secure wireless protocol. Its native support for IP and the Wi-Fi Protected Access 3 (WPA3) standard enhances the security of OTA firmware updates and cloud-based connectivity.
CONNECTING THE FUTURE
OF SECURE ACCESS CONTROL NETWORKS
With the rapid rise of the IoT, access control systems for commercial buildings and offices are evolving to meet market demands for better security, energy efficiency, lower operating costs, and tenant convenience, health and safety.
The persistence of the COVID-19 pandemic has not only upended our lives, but it has also impelled IT and HR professionals to rethink access control best practices and add new health monitoring and screening technologies to the workplace. Even when the pandemic finally abates, it’s likely that enterprise access control systems will continue to use some of the new monitoring systems in place to ensure the safety of building occupants and their guests.
The advent of Wi-Fi HaLow will help network architects and access control developers solve a number of building automation challenges. Wi-Fi HaLow overcomes the distance limitations, network congestion and higher power consumption of conventional Wi-Fi and other 2.4 GHz protocols, as well as the limited number of wireless devices that can be connected to a single access point.
These limitations impede new IoT-centric business models that are emerging across industries to enable a truly connected world. By addressing these challenges, Wi-Fi HaLow is gaining momentum in the market as a standards-based wireless
solution that delivers the right balance of long
range, high capacity, low power, high data rates
and low cost of deployment.
Shahar Feldman is the vice president of marketing at Morse Micro.
58
SEPTEMBER/OCTOBER 2021 | SECURITY TODAY
ACCESS CONTROL


































































































   56   57   58   59   60