
magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS JULY 2018 VOL 33 NO 7

Machine Learning
on the Edge...........................15

 0718msdn_CoverTip_8x10.75.indd 1 0718msdn_CoverTip_8x10.75.indd 1 6/8/18 11:25 AM6/8/18 11:25 AM

http://www.devexpress.com/try

 0318msdn_CoverTip_8x10.75.indd 2 3/13/18 11:38 AM

http://www.devexpress.com/try

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS JULY 2018 VOL 33 NO 7

Machine Learning with IoT Devices
on the Edge
James McCaffrey.. 15

Improving LUIS Intent Classifications
Zvi Topol. 22

Decentralized Applications with
Azure Blockchain as a Service
Stefano Tempesta.. 30

COLUMNS
DATA POINTS
EF Core 2.1 Query Types
Julie Lerman, page 6

THE WORKING
PROGRAMMER
How To Be MEAN:
Dynamically Angular
Ted Neward, page 12

CUTTING EDGE
Online Users, Streaming
and Other SignalR Goodies
Dino Esposito, page 40

TEST RUN
Introduction to DNN Image
Classification Using CNTK
James McCaffrey, page 46

DON’T GET ME STARTED
Building Better Meetings
David S. Platt, page 56

Machine Learning
on the Edge...........................15

0718msdn_C1_v1.indd 1 6/11/18 11:17 AM

Faster Paths to
Amazing Experiences

Get started today with a free trial:
Infragistics.com/Ultimate

Infragistics Ultimate includes 100+ beautifully styled, high performance grids, charts &
other UI controls, plus productivity tools for building web, desktop and mobile apps.

Angular | JavaScript / HTML5 | ASP.NET | Windows Forms | WPF | Xamarin

Fastest grids & charts on the market for the Angular developer

The most complete Microsoft Excel & Spreadsheet Solution
for .NET & JavaScript

UI controls designed to meet the demands of the toughest
fi nacial & capital market apps

Infragistics Ultimate 18.1
New Release

Untitled-4 2 4/4/18 2:43 PM

http://www.Infragistics.com/Ultimate

Faster Paths to
Amazing Experiences

Get started today with a free trial:
Infragistics.com/Ultimate

Infragistics Ultimate includes 100+ beautifully styled, high performance grids, charts &
other UI controls, plus productivity tools for building web, desktop and mobile apps.

Angular | JavaScript / HTML5 | ASP.NET | Windows Forms | WPF | Xamarin

Fastest grids & charts on the market for the Angular developer

The most complete Microsoft Excel & Spreadsheet Solution
for .NET & JavaScript

UI controls designed to meet the demands of the toughest
fi nacial & capital market apps

Infragistics Ultimate 18.1
New Release

Untitled-4 3 4/4/18 2:43 PM

http://www.Infragistics.com/Ultimate

msdn magazine2

ID STATEMENT MSDN Magazine (ISSN 1528-4859) is
published 13 times a year, monthly with a special issue in
November by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid
at Chatsworth, CA 91311-9998, and at additional mailing
offices. Annual subscription rates payable in US funds
are: U.S. $35.00, International $60.00. Annual digital
subscription rates payable in U.S. funds are: U.S. $25.00,
International $25.00. Single copies/back issues: U.S. $10,
all others $12. Send orders with payment to: MSDN
Magazine, P.O. Box 3167, Carol Stream, IL 60132, email
MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN
Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return
Undeliverable Canadian Addresses to Circulation Dept.
or XPO Returns: P.O. Box 201, Richmond Hill,
ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part
prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 4 Venture,
Suite 150, Irvine, CA 92618.

LEGAL DISCLAIMER The information in this magazine
has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed
or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While
the information has been reviewed for accuracy, there
is no guarantee that the same or similar results may be
achieved in all environments. Technical inaccuracies may
result from printing errors and/or new developments
in the industry.

CORPORATE ADDRESS 1105 Media, 9201 Oakdale Ave.
Ste 101, Chatsworth, CA 91311 1105media.com

MEDIA KITS Direct your Media Kit requests to Chief
Revenue Officer Dan LaBianca, 972-687-6702 (phone),
972-687-6799 (fax), dlabianca@1105media.com

REPRINTS For single article reprints (in minimum
quantities of 250-500), e-prints, plaques and posters
contact: PARS International
Phone: 212-221-9595
E-mail: 1105reprints@parsintl.com
Web: 1105Reprints.com

LIST RENTAL This publication’s subscriber list is not
available for rental. However, other lists from 1105
Media, Inc. can be rented.
For more information, please contact our list manager:
Jane Long, Merit Direct
Phone: 913-685-1301;
E-mail: jlong@meritdirect.com;
Web: meritdirect.com/1105

Reaching the Staff
Staff may be reached via e-mail, telephone, fax, or mail.
E-mail: To e-mail any member of the staff, please use the
following form: FirstinitialLastname@1105media.com
Irvine Office (weekdays, 9:00 a.m. – 5:00 p.m. PT)
Telephone 949-265-1520; Fax 949-265-1528
4 Venture, Suite 150, Irvine, CA 92618
Corporate Office (weekdays, 8:30 a.m. – 5:30 p.m. PT)
Telephone 818-814-5200; Fax 818-734-1522
9201 Oakdale Avenue, Suite 101, Chatsworth, CA 91311
The opinions expressed within the articles and other
contentsherein do not necessarily express those of
the publisher.

President
Henry Allain

Chief Revenue Officer
Dan LaBianca

ART STAFF

Creative Director Jeffrey Langkau
Associate Creative Director Scott Rovin
Art Director Michele Singh
Art Director Chris Main
Senior Graphic Designer Alan Tao
Senior Web Designer Martin Peace

PRODUCTION STAFF

Print Production Manager Peter B. Weller
Print Production Coordinator Lee Alexander

ADVERTISING AND SALES

Chief Revenue Officer Dan LaBianca
Regional Sales Manager Christopher Kourtoglou
Advertising Sales Associate Tanya Egenolf

ONLINE/DIGITAL MEDIA

Vice President, Digital Strategy Becky Nagel
Senior Site Producer, News Kurt Mackie
Senior Site Producer Gladys Rama
Site Producer, News David Ramel
Director, Site Administration Shane Lee
Front-End Developer Anya Smolinski
Junior Front-End Developer Casey Rysavy
Office Manager & Site Assoc. James Bowling

LEAD SERVICES

Vice President, Lead Services Michele Imgrund
Senior Director, Audience Development
& Data Procurement Annette Levee
Director, Audience Development
& Lead Generation Marketing Irene Fincher
Director, Client Services & Webinar
Production Tracy Cook
Director, Lead Generation Marketing Eric Yoshizuru
Senior Program Manager, Client Services
& Webinar Production Chris Flack
Project Manager, Lead Generation Marketing
Mahal Ramos

ENTERPRISE COMPUTING GROUP EVENTS

Vice President, Events Brent Sutton
Senior Director, Operations Sara Ross
Senior Director, Event Marketing Mallory Bastionell
Senior Manager, Events Danielle Potts
Senior Marketing Coordinator, Events Michelle Cheng

Chief Executive Officer
Rajeev Kapur

Chief Operating Officer
Henry Allain

Chief Financial Officer
Craig Rucker

Chief Technology Officer
Erik A. Lindgren

Executive Vice President
Michael J. Valenti

Chairman of the Board
Jeffrey S. Klein

General Manager Jeff Sandquist
Director Dan Fernandez
Editorial Director Jennifer Mashkowski mmeditor@microsoft.com
Site Manager Kent Sharkey
Editorial Director, Enterprise Computing Group Scott Bekker
Editor in Chief Michael Desmond
Features Editor Sharon Terdeman
Group Managing Editor Wendy Hernandez
Senior Contributing Editor Dr. James McCaffrey
Contributing Editors Dino Esposito, Frank La Vigne, Julie Lerman, Mark Michaelis,
Ted Neward, David S. Platt
Vice President, Art and Brand Design Scott Shultz
Art Director Joshua Gould

JULY 2018 VOLUME 33 NUMBER 7

magazine

0718msdn_Masthead_v1_2.indd 2 6/11/18 11:35 AM

mailto:mmeditor@microsoft.com
mailto:MSDNmag@1105service.com
mailto:dlabianca@1105media.com
mailto:1105reprints@parsintl.com
mailto:jlong@meritdirect.com
https://www.1105media.com
http://www.1105reprints.com
http://www.meritdirect.com/1105

Untitled-3 1 5/31/18 4:09 PM

http://www.leadtools.com

msdn magazine4

You may have noticed that MSDN Magazine has been shining a light
on the topic of blockchain technology, which can leverage shared
business processes and data across multiple, semi-trusted organiza-
tions. While cryptocurrencies were the first application for blockchain,
the technology promises to have profound impacts on everything
from financial services to inventory and supply chain management.

In March, Jonathan Waldman published his widely read feature,
“Blockchain Fundamentals” (msdn.com/magazine/mt845650), which
provides a great introduction to the workings of blockchain tech-
nology and its application beyond the arena of cryptocurrencies.
Then last month Stefano Tempesta published a walk-through of
Azure Blockchain Workbench (msdn.com/magazine/mt846726), which
Microsoft debuted at the Build Conference in Seattle in May. The
tool streamlines development of complex blockchain applications
so organizations can focus on things that add value, like robust
business logic and smart contracts, rather than scaffolding.

Now in this issue, Tempesta returns with his feature, “Decen-
tralized Applications with Azure Blockchain as a Service,” which
explores Microsoft’s effort to provide, as Tempesta puts it, “a rapid,
low-cost, low-risk platform for building and deploying blockchain

applications.” Just as important, Blockchain as a Service takes the
next step in enabling blockchains to interact with external data
assets, so they can be applied to a wide variety of scenarios.

“Overall, Blockchain as a Service in Azure provides a level of
integration among multiple Azure services that you cannot find
in any other cloud offering,” Tempesta explains. “Azure Active
Directory (AD), Key Value, Service Bus, App Service and SQL
Server are all part of an ecosystem of services connected among each
other in a secure way to guarantee the integrity of the blockchain.”

Tempesta says Microsoft has successfully leveraged the reliable
and secure cloud infrastructure of Azure to position itself as a
leader in the enterprise blockchain space.

Our work in this area is hardly done. Next month, Waldman
returns with a follow-up to his March feature, diving into topics
like the transaction hash chain and proof-of-work and proof-of-
stake consensus algorithms. He’ll also explore what he calls the
“inevitable formation” of blockchain forks and how they can be
resolved. And Tempesta is eyeing a follow-up of his own that will
focus on encryption and security.

Why all this coverage? As Waldman points out, because it’s needed.
“Based on feedback I received from my March article, it’s clear

many readers want to learn about blockchain technologies, but
have been disappointed by the prevalence of educational material
that targets or advocates for a particular implementation,” he says.
“By exploring what I call ‘core technical underpinnings,’ readers
can build a mental map of what a blockchain looks like. Then they
can overlay that image as they study specific blockchains or as
they begin to design their own blockchain-powered applications.”

As blockchain solutions and technology continue to advance and
evolve, our coverage of it will also. Is there an aspect of blockchain
development and implementation you would like to see addressed in
MSDN Magazine? E-mail me
at mmeditor@microsoft.com
and let me know.

Mastering Blockchain

MICHAEL DESMONDEditor’s Note

© 2018 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodified form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affiliated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specific environments and configurations. These recommendations or guidelines may not apply to dissimilar configurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

Next month, Waldman returns
with a follow-up to his March
feature, diving into topics like

the transaction hash chain and
proof-of-work and proof-of-
stake consensus algorithms.

0718msdn_DesmondEdNote_v1_4.indd 4 6/11/18 11:17 AM

mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
http://msdn.com/magazine/mt845650
http://msdn.com/magazine/mt846726
http://msdn.microsoft.com/magazine

Amyuni DOCX Converter
for Windows

www.docxconverter.com

Convert any document, including PDF documents, into DOCX format.
Enable editing of documents using Microsoft Word or other Office products.

Powered by Amyuni Technologies:
Developers of the Amyuni PDF Converter and Amyuni PDF Creator products integrated into

hundreds of applications and installed on millions of desktops and servers worldwide.

Free Demo at DOCXConverter.com

Create naturally editable DOCX
documents with paragraph
formatting and reflow of text

Extract headers and footers from
source document and save them
as DOCX headers and footers

Open PDF documents with the
integrated PDF viewer and quickly
resave them to DOCX format

Configure the way the fonts are
embedded into the DOCX file
for optimal formatting

Convert images and graphics
of multiple formats into
DOCX shapes

Use OCR technology to convert
non-editable text into real text

Create

Extract

Convert

Open

OCR

Configure

A standalone desktop version, a server product
for automated processing or an SDK for
integration into third party applications.

A virtual printer driver available for Windows 7 to Windows 10
and Windows Server 2008 to 2016

All trademarks are property of their respective owners. © Amyuni Technologies Inc. All rights reserved.

MSDN Ad DOCX Converter 02.indd 1 04/11/2017 15:22
Untitled-1 1 11/6/17 12:24 PM

http://www.docxconverter.com

msdn magazine6

EF Core 2.1 is here! And there are many great new features and
improvements. Rather than taking over the entire magazine to
tell you about them all, I’ll share with you the new Query Type
feature, which lets you more easily query the database without
needing true entities with key properties to consume the results.

Prior to query types, it was possible to write queries against
database views and to execute stored procedures with EF Core, but
there were limitations. For the views, you had to rely on the fact that
EF Core doesn’t know the difference between a view and a table
in your database. You could create entities that were part of your
DbContext model, create DbSets for those entities and then write
queries against those DbSets. But a lot of caveats came with that
workflow, such as having to take care not to edit the resulting
objects and accidentally causing SaveChanges to attempt to execute
an update command, which would fail in the database unless your
view was updatable. When executing stored procedures using the
FromSql method, you were again required to tie the results to a
true entity that was part of your data model, which meant adding
extra types to your data model that really didn’t need to be there.

The new Query Type enables easier paths to working with
views, stored procedures and other means of querying your
database. This is because the query type allows you to let EF Core
interact with types that don’t have key properties and map to
database objects that don’t have primary keys. EF has always been
reliant on keys, so this is a big step for EF Core. Additionally, the
query type will help you avoid any interaction with the change
tracker, so you don’t have to add in code to protect your applica-
tion from inadvertent runtime exceptions related to entities that
aren’t updatable. You can even use query types to map to tables,
forcing them to be read-only.

In this article I’m going to explore three capabilities enabled by
query types:

• �Querying against database views
• �Another new feature called “defining queries”
• �Capturing the results of FromSql queries with non-entity types

Vital to query types is letting the DbContext ModelBuilder
know that a type should be recognized as a query type. You do that
by creating a DbQuery property either in the context or with the
ModelBuilder.Query method. Both are new.

If you’ve used EF or EF Core at all, you should be familiar with
DbSet, the EF class that allows you to query and update entities

of a particular type through a DbContext. DbQuery is a cousin
to DbSet, wrapping non-entity types and allowing you to exe-
cute read-only queries against views and tables. And these types
wrapped in a DbQuery are query types.

The EF Core convention for a DbQuery is similar to a DbSet in
that EF Core expects the name of the DbQuery property to match
the name of the database object to which it maps.

Two points you should be aware of are that migrations can’t
build views for you based on mappings, and EF Core can’t reverse-
engineer views (yet).

Mapping to and Querying a Database View
I’ll use DbQuery for the first example—mapping to a database
view and querying from it. This DbQuery presumes there’s a class

EF Core 2.1 Query Types

Data Points JULIE LERMAN

Code download available at msdn.com/magazine/0718magcode.

public class Magazine
{
 public int MagazineId { get; set; }
 public string Name { get; set; }
 public string Publisher { get; set; }
 public List<Article> Articles { get; set; }
}
public class Article
{
 public int ArticleId { get; set; }
 public string Title { get; set; }
 public int MagazineId { get; set; }
 public DateTime PublishDate { get; set; }
 public Author Author { get; set; }
 public int AuthorId { get; set; }
}
public class Author
{
 public int AuthorId { get; set; }
 public string Name { get; set; }
 public List<Article> Articles { get; set; }
}

Figure 1 The Entity Classes for the Sample Model

The new Query Type enables
easier paths to working with

views, stored procedures and
other means of querying

your database.

0718msdn_LermanDPts_v5_6-9.indd 6 6/11/18 10:58 AM

http://www.msdn.com/magazine/0718magcode

7July 2018msdnmagazine.com

already defined, as well as a view named
AuthorArticleCounts in the database:

public DbQuery<AuthorArticleCount>
 AuthorArticleCounts{get;set;}

This alone will allow you to query a
database view. Let’s back up, though, to
look at the model shown in Figure 1.

I’m using a simple model with three
entities to manage publications: Magazine,
Article and Author.

In my database, in addition to the
Magazines, Articles and Authors tables, I
have a view called AuthorArticleCounts,
defined to return the name and number
of articles an author has written:

SELECT
 a.AuthorName,
 Count(r.ArticleId) as ArticleCount
from Authors a
 JOIN Articles r on r.AuthorId = a.AuthorId
GROUP BY a.AuthorName

I’ve also created the AuthorArticleCount
class that matches the schema of the view
results. In the class, I made the property
setters private to make it clear that this
class is read-only, even though EF Core won’t ever attempt to track
or persist data from a query type.

public class AuthorArticleCount
{
 public string AuthorName { get; private set; }
 public int ArticleCount { get; private set; }
}

With the database view in place and a class designed to consume
its results, all I need to map them together is a DbQuery property
in my DbContext—the same example I showed earlier:

public DbQuery<AuthorArticleCount> AuthorArticleCounts{get;set;}

Now EF Core will be happy to work with the AuthorArticle-
Count class, even though it has no key property, because EF Core
understands this to be a query type. You can use it to write and
execute queries against the database view.

For example, this simple LINQ query:
var results=_context.AuthorArticleCounts.ToList();

will cause the following SQL to be sent to my SQLite database:
SELECT "v"."ArticleCount", "v"."AuthorName"
 FROM "AuthorArticleCounts" AS "v"

 The results are a set of AuthorArticleCount objects, as shown
in Figure 2.

And the ChangeTracker of the context used to execute the
query is totally unaware of these objects.

This is a much nicer experience than past EF Core and Entity
Framework implementations where database views were treated
like tables, their results had to be entities and you had to take care
not to accidentally track them with the change tracker.

It’s possible to execute queries without predefining a DbQue-
ry in the DbContext class. DbSet allows this, as well, with the
Set method of a DbContext instance. For a DbQuery, you can
write a query as:

var results=_context.Query<AuthorArticleCount>().ToList();

Configuring Query-Type
Mappings
This DbQuery worked easily because
everything follows convention. When
DbSets and their entities don’t follow EF
Core conventions, you use the Fluent API
or data annotations to specify the cor-
rect mappings in the OnModelCreating
method. And you begin by identifying
which entity in the model you want to
affect using the ModelBuilder’s Entity
method. Just as DbSet gained a cousin
in DbQuery, the Entity method also has
a new cousin: Query. Here’s an example
of using the Query method to point the
AuthorArticleCounts DbQuery to a view
of a different name, using the new ToView
method (similar to the ToTable method):
modelBuilder.Query<AuthorArticleCount>().ToView(
 "View_AuthorArticleCounts");

The Query<T> method returns a
QueryTypeBuilder object. ToView is an
extension method. There are a number

of methods you can use when refining the query type. QueryType
Builder has a subset of EntityTypeBuilder methods: HasAnnota-
tion, HasBaseType, HasOne, HasQueryFilter, IgnoreProperty and
UsePropertyAccessMode. There’s a nice explanation about ToView
and ToTable highlighted as a Tip in the Query Types documenta-
tion that I recommend (bit.ly/2kmQhV8).

Query Types in Relationships
Notice the HasOne method. It’s possible for a query type to be a
dependent (aka “child”) in a one-to-one or one-to-many relation-
ship with an entity, although not with another query type. Also note
that query types aren’t nearly as flexible as entities in relationships,
which is reasonable in my opinion. And you have to set up the
relationships in a particular way.

I’ll start with a one-to-one relationship between the Author
entity and AuthorArticleCount. The most important rules for
implementing this are:

• �The query type must have a navigation property back to the
other end of the relationship.

• �The entity can’t have a navigation property to the query type.
In the latter case, if you were to add an AuthorArticleCount

property to Author, the context would think the AuthorArticle-
Count is an entity and the model builder would fail.

I’ve enhanced the model with two changes:

Figure 2 Results of One-to-One Query

Figure 3 Results of Eager Loading a One-to-
One Relationship Between a Query Type
and an Entity

It’s possible to execute queries
without predefining a DbQuery

in the DbContext class.

0718msdn_LermanDPts_v5_6-9.indd 7 6/11/18 10:58 AM

http://bit.ly/2kmQhV8
http://msdnmagazine.com

msdn magazine8 Data Points

First, I modified the AuthorArticleCount to include an Author
property:

 public Author Author { get; private set; }

Then I added a one-to-one mapping between Author and
AuthorArticleCount:

 modelBuilder.Query<AuthorArticleCount>()
 .HasOne<Author>()
 .WithOne();

Now I can execute LINQ queries to eager load the Author nav-
igation property, for example:

var results =_context.AuthorArticleCounts.Include("Author").ToList();

The results are shown in Figure 3.

Query Types in a One-to-Many Relationship
A one-to-many relationship also requires that the query type be
the dependent end, never the principal (aka parent). To explore
this, I created a new view over the Articles table in the database
called ArticleView:

CREATE VIEW ArticleView as select Title, PublishDate, MagazineId from Articles;

And I created an ArticleView class:
public class ArticleView
{
 public string Title { get; set; }
 public Magazine Magazine { get; set; }
 public int MagazineId { get; set; }
 public DateTime PublishDate { get; set; }
}

Finally, I specified that ArticleView is a query type and defined
its relationship with the Magazine entity, where a Magazine can
have many ArticleViews:

modelBuilder.Query<ArticleView>().HasOne(a => a.Magazine).WithMany();

Now I can execute a query that retrieves graphs of data. I’ll use
an Include method again. Remember that there’s no reference to
the query type in the Magazine class, so you can’t query for a graph
of a magazine with its ArticleViews and see those graphs. You can
only navigate from ArticleView to Magazine, so this is the type of
query you can perform:

var articles=_context.Query<ArticleView>().
Include(m=>m.Magazine).ToList();

Notice that I didn’t create a DbQuery so
I’m using the Query method in my query.

The API documentation for HasOne, which
you’ll find at bit.ly/2Im8UqR, provides more
detail about using this method.

The New Defining Query Feature
Besides ToView, there’s one other new meth-
od on QueryTypeBuilder that never existed
on EntityTypeBuilder, and that’s ToQuery.

ToQuery allows you to define a query directly in the DbContext, and
such a query is referred to as a “defining query.” You can write LINQ
queries and even use FromSql when composing defining queries.
Andrew Peters from the EF team explains that, “One use of ToQuery is
for testing with the in-memory provider. If my app is using a database
view, I can also define a ToQuery that will be used only if I’m targeting
in-memory. In this way I can simulate the database view for testing.”

To start, I created the MagazineStatsView class to consume the
results of the query:

public class MagazineStatsView
{
 public MagazineStatsView(string name, int articleCount, int authorCount)
 {
 Name=name;
 ArticleCount=articleCount;
 AuthorCount=authorCount;
 }
 public string Name { get; private set; }
 public int ArticleCount { get; private set; }
 public int AuthorCount{get; private set;}
}

I then created a defining query in OnModelCreating that queries the
Magazine entities, and builds MagazineStatsView objects from the results:

modelBuilder.Query<MagazineStatsView>().ToQuery(
 () => Magazines.Select(m => new MagazineStatsView(
 m.Name,
 m.Articles.Count,
 m.Articles.Select(a => a.AuthorId).Distinct().Count()
)
)
);

I could also create a DbQuery to make my new defining query a
little more discoverable, but I wanted you to see that I can still use
this without an explicit DbQuery. Here’s a LINQ query for Magazine
StatsView. It will always be handled by the defining query:

var results=_context.Query<MagazineStatsView>().ToList();

Based on the data I’ve used to seed the database, the results of
the query, shown in Figure 4, correctly show two articles and one
unique author for MSDN Magazine, and two articles with two
unique authors for The New Yorker.

Capture FromSql Results in Non-Entity Types
In previous versions of Entity Framework, it was possible to exe-
cute raw SQL and capture those results in random types. We are
closer to being able to perform this type of query thanks to query
types. With EF Core 2.1, the type you want to use to capture the
results of raw SQL queries doesn’t have to be an entity, but it still
has to be known by the model as a query type.

There’s one exception to this, which is that it’s possible (with a lot
of limitations) to return anonymous types.
Even this limited support can still be useful,
so it’s worth being aware of. Here’s a query that
returns an anonymous type using FromSql
and a raw SQL query:

co�ntext.Authors.FromSql("select
authorid,authorname from authors").ToList();

Returning anonymous types by querying
entities only works when the projection
includes the primary key of the type rep-
resented by the DbSet. If I didn’t include
AuthorId, a runtime error would complain
about AuthorId not being in the projection.

Figure 4 Results of Querying with a
Defining Query

ToQuery allows you to define
a query directly in the DbContext,

and such a query is referred to
as a “defining query.”

0718msdn_LermanDPts_v5_6-9.indd 8 6/11/18 10:58 AM

http://www.bit.ly/2Im8UqR

msdnmagazine.com

 .NET IMAGING and PDF

Free evaluation version

www.vintasoft.com

Royalty free licensing

Automate and add
interactivity to your

PDF applications

VintaSoft is a registered trademark

 of VintaSoft Ltd.

 Interactive form field
 JavaScript actions
 Barcode and Signature field
 Annotation and Content editing

 Professional SDK for building
 document management apps

Image Viewer for .NET, WPF
and WEB

100+ Image Processing and
Document Cleanup commands

PDF Reader, Writer, Visual Editor

Image Annotations

JBIG2 and JPEG2000 codecs

OCR and Document Recognition

Forms Processing and OMR

DICOM decoder

Barcode Reader and Generator

TWAIN scanning

Or if I began with context.Magazines.FromSql with the same query
I just showed you, the runtime error would complain about
MagazineId not being available.

A better use of this feature is to predefine a type and make sure
the DbContext is aware of that type, either by defining a DbQuery
or specifying modelBuilder.Query for the type in OnModel
Creating. Then you can use FromSql to query and capture the
results. As a somewhat contrived example, or perhaps I should
say even more contrived than some of the examples I’ve used
already, here’s a new class, Publisher, that’s not an entity or part of
my PublicationsContext:

public class Publisher
{
 public string Name { get; private set; }
 public int YearIncorporated { get; private set; }
}

It, too, is a read-only class, as I have another application where
I maintain Publisher data.

I created a DbQuery<Publisher> named Publishers in my con-
text, and now I can use that to execute raw SQL query:

var publishers=_context.Publishers
 .FromSql("select name, yearfounded from publishers")
 .ToList();

Raw SQL can also be a call to execute a stored procedure. As
long as the schema of the results match the type (in this case,
Publisher), you can do that, even passing in parameters.

Putting the Polish on EF Core
If you’ve been holding off on using EF Core until it was produc-
tion-ready, the time has finally come. EF Core 2.0 made a great leap
in features and functionality, and version 2.1 now includes features
that put a real polish on the product. The wait for features from EF6
to appear in EF Core has been due in part to the fact that the EF team
has not just copied the old implementations but found smarter, more
functional implementations. Query types are a great example of this,
compared to the way that views and raw SQL were supported in
earlier versions of Entity Framework. Be sure to check out the other
new features in EF Core 2.1 by reading the “New Features in EF Core
2.1” section of the EF Core documentation at bit.ly/2IhyHQR.	 n

Julie Lerman is a Microsoft Regional Director, Microsoft MVP, software team
coach and consultant who lives in the hills of Vermont. You can find her presenting
on data access and other topics at user groups and conferences around the world.
She blogs at the thedatafarm.com/blog and is the author of “Programming Entity
Framework,” as well as a Code First and a DbContext edition, all from O’Reilly
Media. Follow her on Twitter: @julielerman and see her Pluralsight courses at
juliel.me/PS-Videos.

Thanks to the following Microsoft technical expert for reviewing this article:
Andrew Peters

If you’ve been holding off
on using EF Core until it was
production-ready, the time

has finally come.

0718msdn_LermanDPts_v5_6-9.indd 9 6/11/18 10:58 AM

http://www.vintasoft.com
http://www.bit.ly/2IhyHQR
www.twitter.com/julielerman
http://www.thedatafarm.com/blog
http://juliel.me/PS-Videos
http://msdnmagazine.com

Yesterday’s Knowledge;
Tomorrow’s Code!
Visual Studio Live! (VSLive!™) is celebrating 25 years of coding innovation

in 2018! From August 13 – 17, developers, software architects, engineers,

designers and more will come together at Microsoft Headquarters for 5 days

of unbiased education on the Microsoft Platform. Hone your skills in Visual
Studio, ASP.NET Core, AngularJS, SQL Server, and so much more. Plus, you

can eat lunch with the Blue Badges, rub elbows with Microsoft insiders,

explore the campus, all while expanding your ability to create better apps!

August 13 – 17, 2018
Redmond, WA

Microsoft
Headquarters

DEVELOPMENT TOPICS INCLUDE:

ASP.NET / Web Server Cloud Computing Software Practices

ALM / DevOps Microsoft SessionsDatabase & Analytics

Native Client Web ClientVisual Studio / .NET

SUPPORTED BY

magazine

EVENT SPONSOR PRODUCED BYSILVER SPONSORPLATINUM SPONSOR

1993 - 2018

Save $300
Early Bird Savings Ends 7/13
Use promo code MSDN

vslive.com/redmond

Untitled-5 2 5/31/18 4:24 PM

https://www.vslive.com/redmond

vslive.com/redmondCONNECT WITH US

linkedin.com – Join the
“Visual Studio Live” group!

facebook.com –
Search “VSLive”

twitter.com/vslive –
@VSLive

AGENDA AT-A-GLANCE Redmond

ALM /
DevOps

Cloud
Computing

Database and
Analytics

Native
Client

Software
Practices

Visual Studio /
.NET Framework

Web
Client

Web
Server

START TIME END TIME Visual Studio Live! Pre-Conference Workshops: Monday, August 13, 2018 (Separate entry fee required)

7:00 AM 8:00 AM Pre-Conference Workshop Registration - Coffee and Morning Pastries

8:00 AM 12:00 PM
M01 Workshop: Build a Modern ASP.NET App in

the Cloud with a full CI/CD Pipeline in VSTS
- Brian Randell

M02 Workshop: Developer Dive into SQL Server 2016
- Leonard Lobel

M03 Workshop: Distributed Cross-Platform
Application Architecture

- Rockford Lhotka and Jason Bock
12:00 PM 2:00 PM Lunch @ The Mixer - Visit the Microsoft Company Store & Visitor Center
2:00 PM 5:30 PM M01 Workshop Continues M02 Workshop Continues M03 Workshop Continues
7:00 PM 9:00 PM Dine-A-Round Dinner

START TIME END TIME Visual Studio Live! Day 1: Tuesday, August 14, 2018
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM T01 Angular 101
- Deborah Kurata

T02 Xamarin: The Future of
App Development

- James Montemagno
T03 Cloud Oriented

Programming - Vishwas Lele
T04 Busting .NET Myths

- Jason Bock
T05 A DevOps Journey

- Abel Wang

9:30 AM 10:45 AM
T06 Write Object-Oriented
JavaScript with TypeScript

- Rachel Appel

T07 Netstandard: Reuse C#
Code Across Windows, Mac,

Linux, iOS, Android
- Rockford Lhotka

T08 Microservices with ACS
(Managed Kubernetes)

- Vishwas Lele
T09 Get Started with Git

- Robert Green
T10 DevOps for the SQL Server

Database - Brian Randell

10:45 AM 11:15 AM Sponsored Break - Visit Exhibitors - Foyer

11:15 AM 12:15 PM KEYNOTE: To Be Announced

12:15 PM 1:30 PM Lunch - McKinley / Visit Exhibitors - Foyer

1:30 PM 2:45 PM
T11 Angular Component

Communication
- Deborah Kurata

T12 Tips & Tricks for Xamarin
Development

- James Montemagno

T13 Modern SQL Server
Security Features for

Developers - Leonard Lobel
T14 To Be Announced T15 Microsoft Session

To Be Announced

3:00 PM 4:15 PM
T16 Build Data Driven Web
Apps Using ASP.NET Core

- Rachel Appel
T17 To Be Announced T18 Introduction to Azure

Cosmos DB - Leonard Lobel
T19 Building A Development

Culture of Collaboration
- Justin Collier

T20 Microsoft Session
To Be Announced

4:15 PM 5:45 PM Microsoft Ask the Experts & Exhibitor Reception – Attend Exhibitor Demos

START TIME END TIME Visual Studio Live! Day 2: Wednesday, August 15, 2018
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM
W01 Assembling the Web -

A Tour of WebAssembly
- Jason Bock

W02 Mobile App Development
for the Web Developer

- Ben Hoelting

W03 - SQL Server 2017 -
Intelligence Built-in

- Scott Klein

W04 Azure DevOps with
VSTS, Docker, and K8

- Brian Randell
W05 Microsoft Session

To Be Announced

9:30 AM 10:45 AM
W06 Getting Pushy with

SignalR and Reactive Extensions
- Jim Wooley

W07 Cross-Platform App
Development Using Xamarin

and CSLA .NET
- Rockford Lhotka

W08 An Architect’s Guide to
Data Science - Becky Isserman

W09 Use Visual Studio to Scale
Agile in Your Enterprise
- Richard Hundhausen

W10 Microsoft Session
To Be Announced

11:00 AM 12:00 PM GENERAL SESSION: To Be Announced

12:00 PM 1:30 PM Birds-of-a-Feather Lunch - Visit Exhibitors

1:30 PM 2:45 PM
W11 Building Reactive Client

Experiences with RxJs
- Jim Wooley

W12 Radically Advanced
XAML: Dashboards, Timelines,

Animation, and More
- Billy Hollis

W13 Knockout: R vs Python for
Data Science - Becky Isserman

W14 Develop on Cadence,
Release on Demand

- Richard Hundhausen
W15 Microsoft Session

To Be Announced

2:45 PM 3:15 PM Sponsored Break - Exhibitor Raffle @ 2:55 pm (Must be present to win)

3:15 PM 4:30 PM
W16 When It Isn’t as Simple

as .js -> .ts
- Garvice Eakins

W17 Programming with
the Model-View-ViewModel

Pattern - Miguel Castro
W18 Busy Developer’s Guide

to NoSQL - Ted Neward
W19 Visualizing the Backlog

with User Story Mapping
- Philip Japikse

W20 Data Science for
Developers - Aashish Bhateja

6:15 PM 9:00 PM Set Sail! VSLive’s Seattle Sunset Cruise - Advanced Reservation & $20 Fee Required

START TIME END TIME Visual Studio Live! Day 3: Thursday, August 16, 2018
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM
TH01 The Whirlwind Tour

of Authentication and
Authorization with ASP.NET

Core - Chris Klug

TH02 Getting Started
Debugging C# Application

- Paul Sheriff
TH03 Leaders Are Made,
Not Born - Philip Japikse

TH04 Using The Microsoft
Cognitive Custom Vision

Service - Michael Washington

TH05 Lessons Learned from
Making Resilient Apps with
Azure Mobile App Services

- Matthew Soucoup

9:30 AM 10:45 AM TH06 Introduction to
Web Pack - Chris Klug

TH07 C# 7.x Like a Boss!
- Adam Tuliper

TH08 The Role of an Architect
- Ted Neward

TH09 Google Home Meets
.NET Containers on Google

Cloud - Mete Atamel
TH10 Microsoft Session

To Be Announced

11:00 AM 12:15 PM
TH11 JavaScript Patterns for

the C# Developer
- Ben Hoelting

TH12 I’ll Get Back to You:
Task, Await, and Asynchronous

Methods - Jeremy Clark

TH13 Demystifying
Microservice Architecture

- Miguel Castro

TH14 Building Business
Applications Using Bots
- Michael Washington

TH15 Microsoft Session
To Be Announced

12:15 PM 2:00 PM Lunch @ The Mixer - Visit the Microsoft Company Store & Visitor Center

2:00 PM 3:15 PM
TH16 Utilizing the MVVM

Design Pattern in WPF
- Paul Sheriff

TH17 Getting to the Core of
the .NET Standard

- Adam Tuliper

TH18 Unit Testing Makes Me
Faster: Convincing Your Boss,

Your Co-Workers, and Yourself
- Jeremy Clark

TH19 Wash, Rinse, Repeat:
Writing Skills for Both Alexa
and Cortana - Christine Flora

TH20 Microsoft Session
To Be Announced

3:30 PM 4:45 PM
TH21 WPF Styles, Resources

and Templates, Oh My!
- Paul Sheriff

TH22 Building Apps with
Microsoft Graph and Visual

Studio - Robert Green
TH23 How to Interview a

Developer - Billy Hollis

TH24 The Complete Package:
Creating a Deployable Solution

for Microsoft Teams
- Christine Flora

TH25 Microsoft Session
To Be Announced

START TIME END TIME Visual Studio Live! Post-Conference Workshops: Friday, August 17, 2018 (Separate entry fee required)

7:30 AM 8:00 AM Post-Conference Workshop Registration - Coffee and Morning Pastries

8:00 AM 5:00 PM F01 Workshop: UX Design for Developers
- Billy Hollis

F02 Workshop: Web Developerment in 2018
- Chris Klug

Speakers and sessions subject to change

Untitled-5 3 5/31/18 4:25 PM

https://www.vslive.com/redmond
https://www.vslive.com/redmond
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
https://www.linkedin.com

msdn magazine12

Welcome back again, MEANers.
In my last column, “How To Be MEAN: Reactive Programming”

(msdn.com/magazine/mt846724), I examined the reactive forms mod-
ule of Angular, which offers a different way to construct a form
and respond to the events the user creates within that. At the end
of that article, I posed a question: What if I have a situation where
there’s a fairly large number of controls, or the controls created
need to change based on the changing nature of the model object
underneath? This is one of those cases where, frankly, relying on
the traditional “template” system that Angular employs won’t cut
it. If I have to create a template for every possible combination of
possibilities, it’s going to be a really long day.

Let’s assume, for the moment, that a conference wishes to build
a poll system for attendees to evaluate speakers, talks, the confer-
ence venue, the Web site, you name it. They want to be able to roll
out new questions pretty quickly, potentially even during the con-
ference itself should the need arise. This means, then, that I want
Web pages that know how to generate fields based on the question
types being asked, and those question types will be coming from
an external source (such as a JSON service or even a file).

It’s not magic. In any GUI system (Web-based or otherwise)
that supports the construction of controls via a runtime construct
(such as being able to “new” up the controls themselves), this is a
reasonable and quite doable thing. It’s certainly doable in Angular:
I can build a system that builds a form entirely off of model objects
and the associated (implicit or explicit) metadata therein.

So, to continue with the questionnaire example, if I build a
simple Angular service that knows how to obtain a series of
“question” objects, an associated Angular form can take some or
all of those objects and construct the corresponding collection of
form elements to present the questions and capture the answers,
presumably for storage somewhere. The key to all of this will be
the FormGroup and FormControls that Angular uses to represent
those controls at runtime.

Dynamic Model
Let’s start with a base class for all questions, which will help capture
some common behavior I expect (and will need) for any question
and its related control. Here’s the code for that:

export type ControlType = "textbox" | "dropdown";

export abstract class Question {
 constructor(public value: string = '',
 public key: string = '',
 public label: string = '',
 public required: boolean = false,
 public controlType: ControlType = 'textbox')
 { }
}

Most of this is going to be pretty straightforward, because most of
the class here is just properties (what the patterns folks sometimes call
a DTO, or Data Transfer Object), but the key element is going to be the
controlType field. It will be the descriptor that corresponds to what
HTML constructs I generate. Currently, it has all of two possibili-
ties: a textbox (allowing for open-ended text entry) or a dropdown
(a single-item selected from a bounded range of possibilities).

Equally obvious, Question is an abstract class, because I expect
derived types to be created here, one for each type of Question.
The code for TextboxQuestion looks like this:

export class TextboxQuestion extends Question {
 constructor(value: string = '',
 key: string = '',
 label: string = '',
 required: boolean = false,
 public type: string = '') {
 super(value, key, label, required, 'textbox');
 }
}

And the code for DropdownQuestion like this:
export class DropdownQuestion extends Question {
 constructor(value: string = '',
 key: string = '',
 label: string = '',
 required: boolean = false,
 public options: {key: string, value: string}[] = [])
 {
 super(value, key, label, required, 'dropdown');
 }
}

Each question passes the set of base parameters up to its
parent, and each adds one thing to the mix. In the case of Textbox-
Question, it adds a type parameter for the textbox in case I want
to signify that this is a password or e-mail textbox. In the case of
DropdownQuestion, it adds an array of key/value pairs to use as
the dropdown possibilities.

Next, however, I have to figure out how to turn these into Form-
Control and FormGroup objects. Arguably, according to the way

How To Be MEAN: Dynamically Angular

The Working Programmer TED NEWARD

@Component({
 selector: 'app-root',
 template: `
 <div>
 <h2>How was our conference?</h2>
 <app-questionnaire [questions]="questions"></app-questionnaire>
 </div>
 `,
 providers: [QuestionService]
})
export class AppComponent {
 questions: Question[];

 constructor(service: QuestionService) {
 this.questions = service.getQuestions();
 }
}

Figure 1 The AppComponent

0718msdn_NewardWProg_v6_12-14.indd 12 6/11/18 11:02 AM

http://msdn.com/magazine/mt846724

HELP US CELEBRATE 25 YEARS
OF CODING INNOVATION!

Register Now to
Save Up to $400!
Use promo code MSDN

September 17 – 20, 2018
Renaissance Chicago

Chicago

SUPPORTED BY

magazine

PRODUCED BYSILVER SPONSOR vslive.com/chicago

Look Back to
Code Forward.

#VSLIVE25

Visual Studio Live! (VSLive!™) is thrilled to be returning
to Chicago this September where developers, software
architects, engineers and designers will tackle training on
the hottest topics (like .NET Core, Angular, VS2017), debate
with industry and Microsoft insiders and network with your
peers. Come experience the education, knowledge-share
and networking at #VSLive25.

CONNECT WITH US

linkedin.com – Join the
“Visual Studio Live” group!

facebook.com –
Search “VSLive”

twitter.com/
vslive – @VSLive

1993 - 2018

DEVELOPMENT TOPICS INCLUDE:

Full Stack Web DeploymentDelivery and Deployment .NET Core and More

Developing New
Experiences

Cloud, Containers
and Microservices

AI, Data and
Machine Learning

DevOps in the
Spotlight

0718msdn_VSLive_Insert.indd 1 6/1/18 2:52 PM

MSDN_Insert_placement_7.625x5.indd 1 6/12/18 10:37 AM

https://www.vslive.com/chicago

For the FIRST TIME EVER in our 25 year history, Visual
Studio Live! is heading to San Diego, CA for up to 5 days
of practical, unbiased, Developer training, including NEW
intense hands-on labs. Join us as we dig into the latest
features of Visual Studio 2017, including ASP.NET Core,
Angular, Xamarin, UWP and more. Help us celebrate 25
years of coding innovation and experience the education,
networking and knowledge-share at #VSLive25.

CODE WITH US IN SUNNY SAN DIEGO!

Register Now to
Save $300!
Use promo code MSDN

CONNECT WITH US

linkedin.com – Join the
“Visual Studio Live” group!

facebook.com –
Search “VSLive”

twitter.com/
vslive – @VSLive

October 7 – 11, 2018
Hilton San Diego Resort

San Diego

vslive.com/sandiegoSUPPORTED BY

magazine

PRODUCED BY

Code Again for
the First Time!

#VSLIVE25

1993 - 2018

DEVELOPMENT TOPICS INCLUDE:

Full Stack Web Deployment Hands-On LabsDelivery and Deployment .NET Core and More

Developing New
Experiences

Cloud, Containers
and Microservices

AI, Data and
Machine Learning

DevOps in the
Spotlight

0718msdn_VSLive_Insert.indd 2 6/1/18 2:53 PM

MSDN_Insert_placement_7.625x5.indd 2 6/12/18 10:37 AM

https://www.vslive.com/sandiego

13July 2018msdnmagazine.com

Notice that the QuestionComponent takes as input the FormGroup
to which it (logically) belongs; I could try to find a different means
by which to obtain the FormControl (for the isValid property imple-
mentation), but this way works and helps keep things simple.

The template for this component is where the real magic of the
dynamic form creation takes place. Thanks to a judicious ngSwitch
on the Question object’s controlType, I can build the HTML ele-
ment pretty simply, as shown in Figure 4.

As you can see, it’s pretty elegant as these things go. I switch
on the controlType property, and depending on whether this is
a dropdown or a textbox type question, build different HTML.

Last, I just need a QuestionService that serves up some ques-
tions, which, again, would usually do so from some external

<div [formGroup]="form">
 <label [attr.for]="question.key">{{question.label}}</label>
 <div [ngSwitch]="question.controlType">

 <input *ngSwitchCase="'textbox'" [formControlName]="question.key"
 [id]="question.key" [type]="question.type">

 <select *ngSwitchCase="'dropdown'" [formControlName]="question.key"
 [id]="question.key">
 <option *ngFor="let opt of question.options" [value]="opt.key">
 {{opt.value}}
 </option>
 </select>
 </div>

 <div class="errorMessage" *ngIf="!isValid">{{question.label}} is required</div>
</div>

Figure 4 Building the HTML Element

Angular thinks about design, that could be a standalone service,
but it makes more sense to me to make it a part of the Question
class, as a static method. (If I ever add a new Question type, it’s this
method that needs to be updated, so it makes more sense to me to
keep them all grouped within the same module.) From the code
side, creating the requisite FormControl objects is pretty straight-
forward, as follows:

export abstract class Question {

 public static toFormGroup(questions: Question[]): FormGroup {
 let group: any = {};

 questions.forEach(question => {
 group[question.key] =
 question.required ? new FormControl(question.value, Validators.required)
 : new FormControl(question.value);
 });
 return new FormGroup(group);
 }
 // ...
}

This method basically takes an array of Questions and turns
them into an array of FormControl objects nestled inside of a
FormGroup object. From this side of things, notice that the only
real question is whether the control is required; any other display
logic will need to be captured inside the template.

Dynamic Display
I also need to start thinking about the Angular UI components
involved here; fundamentally, a poll or questionnaire is made up of
one or more questions, so I’ll use that as the working model: a Ques-
tionnaireComponent uses some number of QuestionComponents,
and each QuestionComponent will have as input a Question object.

It feels a little simpler to start from the top and work my way down,
so let’s do that. First off, I have the AppComponent that will display
the questionnaire, in this case on its own, as shown in Figure 1.

This code offers up the perfect component scenario. I just use it,
and have a service that knows how to provide the input the com-
ponent needs, so the code stays light, simple and easily intuitive
to any Angular developer.

Next, let’s look at the QuestionnaireComponent, as shown in
Figure 2.

Again, the approach is pretty straightforward and simple. The
QuestionnaireComponent takes an array of Questions as its
input, and uses the FormGroup to match up to the form to be built
in the template. Figure 3 shows this.

Generally speaking, the payload would be uploaded via HTTP
through an Angular service, presumably to be stored in a database,
but that’s taking the example a little out of scope. Here, displaying
serves to demonstrate that the data is validated, captured and
prepped for distribution.

Of course, I still have to build the individual question elements
within the form, and that falls to the QuestionComponent code,
shown right here:

@Component({
 selector: 'app-question',
 templateUrl: './question.component.html'
})
export class QuestionComponent {
 @Input() question: Question;
 @Input() form: FormGroup;
 get isValid() { return this.form.controls[this.question.key].valid; }
}

@Component({
 selector: 'app-questionnaire',
 templateUrl: './questionnaire.component.html'
})
export class QuestionnaireComponent implements OnInit {

 @Input() questions: Question[] = [];
 form: FormGroup;
 payload = '';

 ngOnInit() {
 this.form = Question.toFormGroup(this.questions);
 }

 onSubmit() {
 this.payload = JSON.stringify(this.form.value);
 }
}

Figure 2 The QuestionnaireComponent

<div>
 <form (ngSubmit)="onSubmit()" [formGroup]="form">
 <div *ngFor="let question of questions" class="form-row">
 <app-question [question]="question" [form]="form"></app-question>
 </div>

 <div class="form-row">
 <button type="submit" [disabled]="!form.valid">Save</button>
 </div>
 </form>

 <div *ngIf="payload" class="form-row">
 Saved the following values
{{payload}}
 </div>
</div>

Figure 3 Preparing to Build the Form with FormGroup

0718msdn_NewardWProg_v6_12-14.indd 13 6/11/18 11:02 AM

http://msdnmagazine.com

 www.LightningChart.com/ms
2D charts - 3D charts - Maps - Volume rendering - Gauges

FREE
TRY FOR

Ÿ On-line and off-line maps
Ÿ Advanced Polar and Smith charts
Ÿ Outstanding customer support

Ÿ WPF and WinForms
Ÿ Real-time scrolling up to 2 billion points in 2D
Ÿ Hundreds of examples

SUPER-FAST AND ADVANCED CHARTS

LightningChart®

FREE
TRY FOR

Untitled-1 1 5/31/18 3:24 PM

resource like a file or a server-side API. In this particular example,
the service pulls the question from memory, as depicted in Figure 5.

Obviously, in a real questionnaire, a few more questions are likely,
but this example gets the point across.

Wrapping Up
The real question pertaining to any sort of system like this is its exten-
sibility: Can I add new questionnaires without requiring significant
modification? Obviously, the QuestionnaireService is the key there—

so long as it can yield back different arrays of Question objects, I have
an infinite number of questionnaires I can ask our conference attend-
ees. The only restriction is the kinds of questions I can ask right now,
being limited to either multiple-choice or open-ended-text answers.

That raises a second question: How hard would it be to add new
types of questions into the system, such as a ratings control with
discrete numeric values? To do so would require the creation of a
new Question subclass (RatingsQuestion) with the numeric range
to use, a new ControlType enumeration value for the template
to switch on, and modifying the QuestionComponent template
to switch on the new enumeration value and display the HTML
accordingly (however that would look). Everything else would
remain untouched, which is the goal of any component technology—
keep the client unaware of any structural changes unless they
choose to take advantage of the new features.

Angular readers will be itching to give this whole concept a spin,
so I’ll bring things to a close here. However, there’s one more nec-
essary bit we need to go over before we can wrap up our Angular
coverage, so we’ll hit that next time. Until then, happy coding!	 n

Ted Neward is a Seattle-based polytechnology consultant, speaker, and
mentor, currently working as the director of Engineering and Developer Relations
at Smartsheet.com. He has written a ton of articles, authored and co-authored
a dozen books, and speaks all over the world. Reach him at ted@tedneward.com
or read his blog at blogs.tedneward.com.

Thanks to the following technical expert: Garvice Eakins (Smartsheet)

@Injectable()
export class QuestionService {

 getQuestions() {
 return [
 new TextboxQuestion('', 'firstName',
 'Speaker\'s First name', true),

 new DropdownQuestion('', 'enjoyment',
 'How much did you enjoy this speaker\'s talk?',
 false,
 [
 {key: 'great', value: 'Great'},
 {key: 'good', value: 'Good'},
 {key: 'solid', value: 'Solid'},
 {key: 'uninspiring', value: 'Uninspiring'},
 {key: 'wwyt', value: 'What Were You Thinking?'}
]),
];
 }
}

Figure 5 Getting Questions from QuestionService

0718msdn_NewardWProg_v6_12-14.indd 14 6/11/18 11:02 AM

http://www.LightningChart.com/ms
mailto:ted@tedneward.com
http://blogs.tedneward.com

15July 2018

Machine Learning with
IoT Devices on the Edge

Imagine that, in the not too distant future, you’re the designer
of a smart traffic intersection. Your smart intersection has four
video cameras connected to an Internet of things (IoT) device with
a small CPU, similar to a Raspberry Pi. The cameras send video
frames to the IoT device, where they’re analyzed using a machine
learning (ML) image-recognition model and control instructions
are then sent to the traffic signals. One of the small IoT devices is
connected to Azure Cloud Services, where information is logged
and analyzed offline.

This is an example of ML on an IoT device on the edge. I use
the term edge device to mean anything connected to the cloud,
where cloud refers to something like Microsoft Azure or a com-
pany’s remote servers. In this article, I’ll explain two ways you
can design ML on the edge. Specifically, I’ll describe how to write
a custom model and IO function for a device, and how to use
the Microsoft Embedded Learning Library (ELL) set of tools to
deploy an optimized ML model to a device on the edge. The custom
IO approach is currently, as I write this article, the most common
way to deploy an ML model to an IoT device. The ELL approach
is forward-looking.

Even if you’re not working with ML on IoT devices, there are at
least three reasons why you might want to read this article. First, the
design principles involved generalize to other software development
scenarios. Second, it’s quite possible that you’ll be working with ML
and IoT devices relatively soon. Third, you may just find the tech-
niques described here interesting in their own right.

Why does ML need to be on the IoT edge? Why not just do all
processing in the cloud? IoT devices on the edge can be very inex-
pensive, but they often have limited memory, limited processing
capability and a limited power supply. In many scenarios, trying
to perform ML processing in the cloud has several drawbacks.

Latency is often a big problem. In the smart traffic intersection
example, a delay of more than a fraction of a second could have
disastrous consequences. Additional problems with trying to perform
ML in the cloud include reliability (a dropped network connection
is typically impossible to predict and difficult to deal with), network
availability (for example, a ship at sea may have connectivity only
when a satellite is overhead) and privacy/security (when, for exam-
ple, you’re monitoring a patient in a hospital.)

This article doesn’t assume you have any particular background
or skill set but does assume you have some general software devel-
opment experience. The demo programs described in this article
(a Python program that uses the CNTK library to create an ML
model, a C program that simulates IoT code and a Python program
that uses an ELL model) are too long to present here, but they’re
available in the accompanying file download.

What Is a Machine Learning Model?
In order to understand the issues with deploying an ML model to
an IoT device on the edge, you must understand exactly what an
ML model is. Very loosely speaking, an ML model is all the infor-
mation needed to accept input data, make a prediction and generate
output data. Rather than try to explain in the abstract, I’ll illustrate
the ideas using a concrete example.

Take a look at the screenshot in Figure 1 and the diagram in
Figure 2. The two figures show a neural network with four input nodes,
five hidden layer processing nodes and three output layer nodes. The

MACH INE L E AR NING

James McCaffrey

The ELL system is an open source project and is in the very early
stages of development. Therefore, some of the information about
ELL in this article may have changed by the time you read this article.

This article discusses:
•	What a machine learning (ML) model consist of

•	Deploying a standard ML model to an IoT device

•	Writing a custom code solution

•	Using the Microsoft Embedded Learning Library

Technologies discussed:
Visual Studio Code, Microsoft Embedded Learning Library (ELL),
Python, Microsoft CNTK library

Code download available at:
msdn.com/magazine/0718magcode

0718msdn_McCaffreyELL_v3_15-21.indd 15 6/11/18 10:59 AM

http://www.msdn.com/magazine/0718magcode

msdn magazine16 Machine Learning

input values are (6,1, 3.1, 5.1, 1.1) and
the output values are (0.0321, 0.6458,
0.3221). Figure 1 shows how the
model was developed and trained. I
used Visual Studio Code, but there
are many alternatives.

This particular example involves
predicting the species of an iris
flower using input values that rep-
resent sepal (a leaf-like structure)
length and width and petal length
and width. There are three possible
species of flower: setosa, versicolor,
virginica. The output values can be
interpreted as probabilities (note
that they sum to 1.0) so, because
the second value, 0.6458, is larg-
est, the model’s prediction is the
second species, versicolor.

In Figure 2, each line connect-
ing a pair of nodes represents a
weight. A weight is just a numeric
constant. If nodes are zero-base
indexed, from top to bottom, the
weight from input[0] to hidden[0]
is 0.2680 and the weight from
hidden[4] to output[0] is 0.9381.

Each hidden and output node
has a small arrow pointing into
the node. These are called biases.
The bias for hidden[0] is 0.1164 and
the bias for output[0] is -0.0466.

You can think of a neural network
as a complicated math function
because it just accepts numeric
input and produces numeric out-
put. An ML model on an IoT device
needs to know how to compute output. For the neural network in
Figure 2, the first step is to compute the values of the hidden nodes.
The value of each hidden node is the hyperbolic tangent (tanh) func-
tion applied to the sum of the products of inputs and associated
weights, plus the bias. For hidden[0] the calculation is:

hidden[0] = tanh((6.1 * 0.2680) + (3.1 * 0.3954) +
 (5.1 * -0.5503) + (1.1 * -0.3220) + 0.1164)
 = tanh(-0.1838)
 = -0.1817

Hidden nodes [1] through [4] are calculated similarly. The tanh
function is called the hidden layer activation function. There are other
activation functions that can be used, such as logistic sigmoid and
rectified linear unit, which would give different hidden node values.

After the hidden node values have been computed, the next step
is to compute preliminary output node values. A preliminary output
node value is just the sum of products of hidden nodes and associ-
ated hidden-to-output weights, plus the bias. In other words, the
same calculation as used for hidden nodes, but without the activation
function. For the preliminary value of output[0] the calculation is:

o_pre[0] = (-0.1817 * 0.7552) + (-0.0824 * -0.7297) +
 (-0.1190 * -0.6733) + (-0.9287 * 0.9367) +
 (-0.9081 * 0.9381) + (-0.0466)
 = -1.7654

The values for output nodes [1] and [2] are calculated in the same
way. After the preliminary values of the output nodes have been com-
puted, the final output node values can be converted to probabilities
using the softmax activation function. The softmax function is best
explained by example. The calculations for the final output values are:

sum = exp(o_pre[0]) + exp(o_pre[1]) + exp(o_pre[2])
 = 0.1711 + 3.4391 + 1.7153
 = 5.3255

output[0] = exp(o_pre[0]) / sum
 = 0.1711 / 5.3255 = 0.0321

output[1] = exp(o_pre[1]) / sum
 = 3.4391 / 5.3255 = 0.6458

output[2] = exp(o_pre[2]) / sum
 = 1.7153 / 5.3255 = 0.3221

As with the hidden nodes, there are alternative output node
activation functions, such as the identity function.

Figure 1 Creating and Training a Neural Network Model

0718msdn_McCaffreyELL_v3_15-21.indd 16 6/11/18 10:59 AM

Untitled-1 1 6/8/18 12:11 PM

http://www.devexpress.com/spreadsheet

msdn magazine18 Machine Learning

To summarize, an ML model is all the information needed to
accept input data and generate an output prediction. In the case
of a neural network, this information consists of the number of
input, hidden and output nodes, the values of the weights and
biases, and the types of activation functions used on the hidden
and output layer nodes.

OK, but where do the values of the weights and the biases come
from? They’re determined by training the model. Training is using
a set of data that has known input values and known, correct
output values, and applying an optimization algorithm such as
back-propagation to minimize the difference between computed
output values and known, correct output values.

There are many other kinds of ML models, such as decision trees
and naive Bayes, but the general principles are the same. When using
a neural network code library such as Microsoft CNTK or Google
Keras/TensorFlow, the program that trains an ML model will save
the model to disk. For example, CNTK and Keras code resembles:

mp = ".\\Models\\iris_nn.model"
model.save(mp, format=C.ModelFormat.CNTKv2) # CNTK

model.save(".\\Models\\iris_model.h5") # Keras

ML libraries also have functions to load a saved model. For example:
mp = ".\\Models\\iris_nn.model"
model = C.ops.functions.Function.load(mp) # CNTK

model = load_model(".\\Models\\iris_model.h5") # Keras

Most neural network libraries have a way to save just a model’s
weights and biases values to file (as opposed to the entire model).

Deploying a Standard ML Model to an IoT Device
The image in Figure 1 shows an example of what training an ML
model looks like. I used Visual Studio Code as the editor and
the Python language API interface to the CNTK v2.4 library.
Creating a trained ML model can take days or weeks of effort, and
typically requires a lot of processing power and memory. There-
fore, model training is usually performed on powerful machines,

often with one or more GPUs. Additionally, as the size and com-
plexity of a neural network increases, the number of weights and
biases increases dramatically, and so the file size of a saved model
also increases greatly.

For example, the 4-5-3 iris model described in the previous
section has only (4 * 5) + 5 + (5 * 3) + 3 = 43 weights and biases.
But an image classification model with millions of input pixel
values and hundreds of hidden processing nodes can have hun-
dreds of millions, or even billions, of weights and biases. Notice
that the values of all 43 weights and biases of the iris example are
shown in Figure 1:

[[0.2680 -0.3782 -0.3828 0.1143 0.1269]
 [0.3954 -0.4367 -0.4332 0.3880 0.3814]
 [-0.5503 0.6453 0.6394 -0.6454 -0.6300]
 [-0.322 0.4035 0.4163 -0.3074 -0.3112]]

 [0.1164 -0.1567 -0.1604 0.0810 0.0822]

[[0.7552 -0.0001 -0.7706]
 [-0.7297 -0.2048 0.9301]
 [-0.6733 -0.2512 0.9167]
 [0.9367 -0.4276 -0.5134]
 [0.9381 -0.3728 -0.5667]]

 [-0.0466 0.4528 -0.4062]

So, suppose you have a trained ML model. You want to deploy
the model to a small, weak, IoT device. The simplest solution is to
install onto the IoT device the same neural network library software
you used to train the model. Then you can copy the saved trained
model file to the IoT device and write code to load the model and
make a prediction. Easy!

Unfortunately, this approach will work only in relatively rare situ-
ations where your IoT device is quite powerful—perhaps along the
lines of a desktop PC or laptop. Also, neural network libraries such as
CNTK and Keras/TensorFlow were designed to train models quickly
and efficiently, but in general they were not necessarily designed for
optimal performance when performing input-output with a trained
model. In short, the easy solution for deploying a trained ML model
to an IoT device on the edge is rarely feasible.

The Custom Code Solution
Based on my experience and conversations with colleagues,
the most common way to deploy a trained ML model to an IoT
device on the edge is to write custom C/C++ code on the device.
The idea is that C/C++ is almost universally available on IoT
devices, and C/C++ is typically fast and compact. The demo pro-
gram in Figure 3 illustrates the concept.

The demo program starts by using the gcc C/C++ tool to compile
file test.c into an executable on the target device. Here, the target
device is just my desktop PC but there are C/C++ compilers for
almost every kind of IoT/CPU device. When run, the demo pro-
gram displays the values of the weights and biases of the iris flower
example, then uses input values of (6.1, 3.1, 5.1, 1.1) and computes
and displays the output values (0.0321, 0.6458, 0.3221). If you com-
pare Figure 3 with Figures 1 and 2, you’ll see the inputs, weights
and biases, and outputs are the same (subject to rounding error).

Demo program test.c implements only the neural network
input-output process. The program starts by setting up a struct data
structure to hold the number of nodes in each layer, values for the
hidden and output layer nodes, and values of the weights and biases:Figure 2 The Neural Network Input-Output Mechanism

0.26800.2680

0.75520.7552

-0.7297-0.7297

-0.6733-0.6733

0.93670.9367

0.93810.9381

0.39540.3954

-0.5503-0.5503

-0.3220-0.3220

hidden layer

0.1817

-0.0824

-0.1190

-0.9287

-0.9081

input layer output layer

0.0321

0.6458

0.3221

-1.7654

1.2352

0.5396

0.1164

-0.0466

6.1

3.1

5.1

1.1

0718msdn_McCaffreyELL_v3_15-21.indd 18 6/11/18 10:59 AM

19July 2018msdnmagazine.com

#include <stdio.h>
#include <stdlib.h>
#include <math.h> // Has tanh()

typedef struct {
 int ni, nh, no;
 float *h_nodes, *o_nodes; // No i_nodes
 float **ih_wts, **ho_wts;
 float *h_biases, *o_biases;
} nn_t;

The program defines the following functions:
construct(): initialize the struct
free(): deallocate memory when done
set_weights(): assign values to weights and biases
softmax(): the softmax function
predict(): implements the NN IO mechanism
show_weights(): a display helper

The key lines of code in the demo program main function look like:
nn_t net; // Neural net struct
construct(&net, 4, 5, 3); // Instantiate the NN

float wts[43] = { // specify the weights and biases
 0.2680, -0.3782, -0.3828, 0.1143, 0.1269,
. . .
 -0.0466, 0.4528, -0.4062 };

set_weights(&net, wts); // Copy values into NN
float inpts[4] = { 6.1, 3.1, 5.1, 1.1 }; // Inputs
int shownodes = 0; // Don’t show
float* probs = predict(net, inpts, shownodes);

The point is that if you know exactly how a simple neural
network ML model works, the IO process isn’t magic. You can
implement basic IO quite easily.

The main advantage of using a custom C/C++ IO function is
conceptual simplicity. Also, because you’re coding at a very low
level (really just one level of abstraction
above assembly language), the gener-
ated executable code will typically be
very small and run very fast. Addition-
ally, because you have full control over
your IO code, you can use all kinds
of tricks to speed up performance or
reduce memory footprint. For exam-
ple, program test.c uses type float but,
depending on the problem scenario,
you might be able to use a custom
16-bit fixed-point data type.

The main disadvantage of using a
custom C/C++ IO approach is that the
technique becomes increasingly diffi-
cult as the complexity of the trained
ML model increases. For example, an
IO function for a single hidden layer
neural network with tanh and softmax

activation is very easy to implement—taking only about one day
to one week of development effort, depending on many factors,
of course. A deep neural network with several hidden layers is
somewhat easy to deal with—maybe a week or two of effort. But
implementing the IO functionality of a convolutional neural net-
work (CNN) or a long, short-term memory (LSTM) recurrent

Figure 3 Simulation of Custom C/C++ IO Code on an IoT Device

Figure 4 The ELL Workflow Process, High-Level and Granular

CNTK Model

Darknet Model

TensorFlow Model

ONNX Model

Prediction Model
for Minimal PC

Prediction Model
for Raspberry Pi

Prediction Model
for Cortex M4

Prediction Model
for iPhone

.ell File

dev machine

IoT device

(produces)

ELL tool cntk_import.py

ELL tool wrap.py

cmake.exe

(used in)

iris nn.py (Python Code File)

use_iris_ell_model.py (Python)

iris_cntk.model (Binary File)

.\host\build (C++ Files)

iris_cntk (Python Module)

iris_cntk.ell (JSON File)

The main advantage of using
a custom C/C++ IO function is

conceptual simplicity.

0718msdn_McCaffreyELL_v3_15-21.indd 19 6/11/18 10:59 AM

http://msdnmagazine.com

msdn magazine20 Machine Learning

neural network is very difficult and would typically require much
more than four weeks of development effort.

I suspect that as the use of IoT devices increases, there will be
efforts to create open source C/C++ libraries that implement the
IO for ML models created by different neural network libraries
such as CNTK and Keras/TensorFlow. Or, if there’s enough
demand, the developers of neural network libraries might create
C/C++ IO APIs for IoT devices themselves. If you had such a library,
writing custom IO for an IoT device would be relatively simple.

The Microsoft Embedded Learning Library
The Microsoft Embedded Learning Library (ELL) is an ambi-
tious open source project intended to ease the development effort
required to deploy an ML model to an IoT device on the edge
(microsoft.github.io/ELL). The basic idea of ELL is illustrated on the left
side of Figure 4.

In words, the ELL system accepts an ML model created by a
supported library, such as CNTK, or a supported model format,
such as open neural network exchange (ONNX). The ELL system
uses the input ML model and generates an intermediate model as
an .ell file. Then the ELL system uses the intermediate .ell model
file to generate executable code of some kind for a supported
target device. Put another way, you can think of ELL as a sort of
cross-compiler for ML models.

A more granular explanation of how ELL works is shown on the
right side of Figure 4, using the iris flower model example. The
process starts with an ML developer writing a Python program
named iris_nn.py to create and save a prediction model named
iris_cntk.model, which is in a proprietary binary format. This
process is shown in Figure 1.

The ELL command-line tool cntk_import.py is then used to
create an intermediate iris_cntk.ell file, which is stored in JSON
format. Next, the ELL command-line tool wrap.py is used to gen-
erate a directory host\build of C/C++ source code files. Note that
“host” means to take the settings from the current machine, so a
more common scenario would be something like \pi3\build. Then
the cmake.exe C/C++ compiler-build tool is used to generate

a Python module of executable code,
containing the logic of the original ML
model, named iris_cntk. The target could
be a C/C++ executable or a C# executable
or whatever is best-suited for the target
IoT device.

The iris_cntk Python module can
then be imported by a Python program
(use_iris_ell_model.py) on the target
device (my desktop PC), as shown in Fig-
ure 5. Notice that the input values (6.1, 3.1,
5.1, 1.1) and output values (0.0321, 0.6457,
0.3221) generated by the ELL system model
are the same as the values generated during
model development (Figure 1) and the
values generated by the custom C/C++
IO function (Figure 3).

The leading “(py36)” before the com-
mand prompts in Figure 5 indicate I’m working in a special
Python setting called a Conda environment where I’m using Python
version 3.6, which was required at the time I coded my ELL demo.

The code for program use_iris_ell_model.py is shown in Figure
6. The point is that ELL has generated a Python module/package
that can be used just like any other package/module.

The ELL system is still in the very early stages of develop-
ment, but based on my experience, the system is ready for you
to experiment with and is stable enough for limited production
development scenarios.

I expect your reaction to the diagram of the ELL process in
Figure 4 and its explanation is something like, “Wow, that’s a lot
of steps!” At least, that was my reaction. Eventually, I expect the
ELL system to mature to a point where you can generate a model
for deployment to an IoT device along the lines of:

source_model = ".\\iris_cntk.model"
target_model = ".\\iris_cortex_m4.model"
ell_generate(source_model, target_model)

But for now, if you want to explore ELL you’ll have to work with
several steps. Luckily, the ELL tutorial from the ELL Web site on
which much of this article is based is very good. I should point
out that to get started with ELL you must install ELL on your

use_iris_ell_model.py
Python 3.6

import numpy as np
import tutorial_helpers # used to find package
import iris_cntk as m # the ELL module/package

print("\nBegin use ELL model demo \n")

unknown = np.array([[6.1, 3.1, 5.1, 1.1]],
 dtype=np.float32)

np.set_printoptions(precision=4, suppress=True)
print("Input to ELL model: ")
print(unknown)
predicted = m.predict(unknown)
print("\nPrediction probabilities: ")
print(predicted)
print("\nEnd ELL demo \n"

Figure 6 Using an ELL Model in a Python Program

Figure 5 Simulation of Using an ELL Model on an IoT Device

0718msdn_McCaffreyELL_v3_15-21.indd 20 6/11/18 10:59 AM

http://microsoft.github.io/ELL

msdnmagazine.com
dtSearch.com 1-800-IT-FINDS

 The Smart Choice for Text Retrieval®

since 1991

dtSearch’s document filters support:
• popular file types
• emails with multilevel attachments
• a wide variety of databases
• web data

Developers:
• APIs for .NET, C++ and Java; ask about

new cross-platform .NET Standard SDK
with Xamarin and .NET Core

• SDKs for Windows, UWP, Linux, Mac,
iOS in beta, Android in beta

• FAQs on faceted search, granular data
classification, Azure and more

Visit dtSearch.com for
• hundreds of reviews and case studies
• fully-functional enterprise and

developer evaluations

Over 25 search options including:
• efficient multithreaded search
• easy multicolor hit-highlighting
• forensics options like credit card search

Instantly Search
Terabytes

®

desktop machine, and installation consists of building C/C++
source code—there’s no .msi installer for ELL (yet).

A cool feature of ELL that isn’t obvious is that it performs some
very sophisticated optimization behind the scenes. For example,
the ELL team has explored ways to compress large ML models,
including sparsification and pruning techniques, and replacing
floating point math with 1-bit math. The ELL team is also looking
at algorithms that can be used in place of neural networks, includ-
ing improved decision trees and k-DNF classifiers.

The tutorials on the ELL Web site are quite good, but because
there are many steps involved, they are a bit long. Let me briefly
sketch out the process so you can get a feel for what installing and
using ELL is like. Note that my commands are not syntactically
correct; they’re highly simplified to keep the main ideas clear.

Installing the ELL system resembles:
> (install several tools such as cmake and BLAS)
> git clone https://github.com/Microsoft/ELL.git
> cd ELL
> nuget.exe restore external/packages.config -PackagesDirectory external
> md build
> cd build
> cmake -G "Visual Studio 15 2017 Win64" ..
> cmake --build . --config Release
> cmake --build . --target _ELL_python --config Release

In words, you must have quite a few tools installed before start-
ing, then you pull the ELL source code down from GitHub and then
build the ELL executable tools and Python binding using cmake.

Creating an ELL model resembles:
> python cntk_import.py iris_cntk.model
> python wrap.py iris_nn_cntk.ell --language python --target host
> cd host
> md build
> cd build
> cmake -G "Visual Studio 15 2017 Win64" .. && cmake --build . --config release

That is, you use ELL tool cntk_import.py to create a .ell file from a
CNTK model file. You use wrap.py to generate a lot of C/C++ specific
to a particular target IoT device. And you use cmake to generate
executables that encapsulate the original trained ML model’s behavior.

Wrapping Up
To summarize, a machine learning model is all the information
needed for a software system to accept input and generate a pre-
diction. Because IoT devices on the edge often require very fast and
reliable performance, it’s sometimes necessary to compute ML pre-
dictions directly on a device. However, IoT devices are often small
and weak, so you can’t simply copy a model that was developed on
a powerful desktop machine to the device. A standard approach
is to write custom C/C++ code, but this approach doesn’t scale
to complex ML models. An emerging approach is the use of ML
cross-compilers, such as the Microsoft Embedded Learning Library.

When fully mature and released, the ELL system will quite likely
make developing complex ML models for IoT devices on the edge
dramatically easier than it is today.	 n

Dr. James McCaffrey works for Microsoft Research in Redmond, Wash. He has
worked on several Microsoft products, including Internet Explorer and Bing.
Dr. McCaffrey can be reached at jamccaff@microsoft.com.

Thanks to the following Microsoft technical experts who reviewed this article:
Byron Changuion, Chuck Jacobs, Chris Lee and Ricky Loynd

0718msdn_McCaffreyELL_v3_15-21.indd 21 6/11/18 10:59 AM

mailto:jamccaff@microsoft.com
http://www.dtSearch.com
http://msdnmagazine.com

msdn magazine22

The Language Understanding Intelligence Service
(LUIS), which is part of Microsoft Cognitive Services, offers a
machine learning solution for natural language understanding.
There are many use cases for LUIS, including chat bots, voice
interfaces and cognitive search engines.

In a nutshell, when given a textual user input, also known as
an utterance, LUIS returns the intent detected behind the utter-
ance, that is, what the user intends to ask about. It also detects the
different entities—references to real-world objects—that appear in
the utterance. Additionally, it outputs a confidence score for each
intent and entity detected. Those are numbers in the range [0, 1],
with 1 indicating the most confidence about the detection and 0
being the least confident about it.

Previous MSDN Magazine articles have covered the basics of
LUIS in detail. In particular, I encourage you to refer to the article,
“Enable Natural Language Interaction with LUIS,” by Ashish Sahu
(msdn.com/magazine/mt745095) for additional information about how
to get started with LUIS.

This article will focus on two open source tools, Scattertext and
LIME, which can help you understand the detection and classifi-
cation of intents by LUIS. (In what follows, I’ll use detection and
classification interchangeably.)

In particular, I’ll show how such tools can be used to shed some
light on the classification process and explain why LUIS is uncer-
tain about its intent detection in some cases—typically situations
in which the top intents detected for a given utterance have sim-
ilar confidence scores, for example a 50-50 split between two in-
tents. It’s more likely to output the wrong intent in such situations.

While LUIS currently supports some troubleshooting capabilities,
including active learning to help identify and retrain utterances it’s
uncertain about, there are no word-level visualization and analysis
tools that can further help resolve such uncertainty. Scattertext and
LIME can help in overcoming that limitation.

Now let’s take a look at a simple FinTech case that will serve as
a running example. Imagine you work for a bank and you’ve been
tasked with understanding user questions that fall into two categories:

• �Questions about their personal bank accounts, such as:
“What is my savings account balance?”
“What is the latest transaction in my checking account?”
“I would like my savings statement to be sent again”
“Have I received my April salary yet?”
“When was the last cell phone auto pay processed?”
“What are annual rates for my savings accounts?”
“What is the balance in my checking account?”

• �Questions or requests about other banking services,
including mortgages, auto loans, and so forth, such as:

CO GN IT IVE SER V IC ES

Improving LUIS Intent
Classifications
Zvi Topol

This article discusses:
•	LUIS intent classification

•	Visualizing how utterances fit into your model’s intents
using Scattertext

•	Explaining intent classification using LIME

Technologies discussed:
LUIS, QnA Maker, Scattertext, Python, LIME

0718msdn_TopolLUIS_v3_22-27.indd 22 6/11/18 11:02 AM

http://msdn.com/magazine/mt745095

23July 2018msdnmagazine.com

“I would like to get assistance about mortgage rates”
“Whom can I speak with regarding mortgages?”
“What is the annual rate for the one-year savings account?”
“What terms do you offer for mortgages?”
“Who is responsible for mortgages?”
“What are annual rates for savings accounts?”
“How are your mortgage rates compared to other banks?”

The plan is to use LUIS for natural language understanding of
the user requests. One way to go about this is to create two intents
and train LUIS to detect them.

Let’s call the first category’s intent PersonalAccountsIntent, and
the second category’s intent OtherServicesIntent. You can then use
the utterance examples previously listed to train LUIS. It will create
a third “catch-all” intent automatically called None for general utter-
ances, which should be very different from the first two intents. You
can also provide additional examples for the None intent.

After training, you can publish your model to production. You
can also see the utterances along with the confidence scores for the
different intents in the LUIS UI, as shown in Figure 1.

The dashboard offers some basic summary statistics about the
application. If you look at the dashboard in Figure 1, you’ll notice
that the lowest confidence score for PersonalAccountsIntent is
0.59 and is obtained for the utterance, “what are annual rates for
my savings accounts?” The confidence score for this utterance to
be classified as OtherServicesIntent is pretty close at 0.44. This
means that LUIS is not very certain as to how to classify this intent.

Ideally, you want your intents to be distinguishable from one
another with a high degree of certainty, that is, to have one intent
with a very high confidence score, while other intents have very
low scores. If you revisit the utterance lists for both intents, you’ll
see there’s another very similar utterance example (“what is the
annual rate for the one-year savings account?”) that’s labeled
differently as OtherServicesIntent.

Using this insight, you can fine-tune your utterance samples to
use different and distinct words.

Here, I’ve presented seven utterance examples for each intent.
But what if there were multiple intents (at the time of writing LUIS
can classify up to 500 different intents) and many more utterance
examples for each intent?

Clearly, a more systematic approach is needed to address such
a challenge. In what follows, I’ll show how Scattertext and LIME
can help.

Understanding Intent Classification Using Scattertext
Scattertext is an open source tool written in Python by Jason Kessler.
You’ll find the source code and a tutorial at bit.ly/2G0DLmp, and a paper
entitled “Scattertext: a Browser-Based Tool for Visualizing How
Corpora Differ,” which explains the tool in detail, at bit.ly/2G05ow6.

Scattertext was conceived as a tool to visualize the differences
and similarities between two collections of text articles, also known
as corpora, and has various features you may find useful; for
example, it also supports emojis.

In this article, I’m going to leverage the tool to produce a visualiza-
tion of the differences and similarities between the utterance examples
for the two intents, PersonalAccountsIntent and OtherServicesIntent.

To install Scattertext, which requires Python version 3, follow
the installation instructions in the tutorial. I also recommended
you install Spacy, an open source Natural Language Processing
library (spacy.io) and Pandas (pandas.pydata.org), another open source
library that lets you work with tabular data in-memory.

 Figure 1 PersonalAccountsIntent Utterances with Their Confidence Scores

Ideally, you want your intents to be
distinguishable from one another

with a high degree of certainty.

0718msdn_TopolLUIS_v3_22-27.indd 23 6/11/18 11:02 AM

http://bit.ly/2G0DLmp
http://bit.ly/2G05ow6
http://spacy.io
http://pandas.pydata.org
http://msdnmagazine.com

msdn magazine24 Cognitive Services

Now I need to feed the utterance examples into Scattertext. To do
that, I’ll create a CSV table with two columns, one for the utterances
and the other for the intents. The utterance column will include the
utterance examples as one string, separated by the new-line character.
(If you’re using Excel, you can use Alt+Enter to enter multiple lines
into a single cell.) The intent column will include the labels of the
intents, in this case, PersonalAccountsIntent and OtherServices
Intent. So, for this example the result is a 2x2 CSV table.

You can now use Python to run the code in Figure 2. The code
will load the CSV table into a Panda data frame and then hand it
over to Scattertext, specifying a few parameters related to catego-
ries (the intents) and the output format.

Scattertext will produce an HTML page that includes a visual
ization showing the top words unique for each intent, as well as
those shared by both intents. There’s also a search box that lets
you look for particular words, that if found, are highlighted in the

visualization. In a crowded visualization, this can be very useful.
Figure 3 shows the Scattertext output for this example.

Scattertext works by counting word frequencies for each intent’s
utterance examples and displaying the words in a way that makes
it easier to determine differences and similarities between the
intents. At this point, the counts only include one-word expres-
sions (unigrams). However, if you have expressions that include
multiple words, such as “auto pay,” you can do some pre-processing
to specify what you want. For example, you could represent “auto
pay” as “auto_pay.”

The visualization in Figure 3 shows the two intents—Other-
ServicesIntent on the X axis and PersonalAccountsIntent on the
Y axis. Words that appear closer to the bottom right are more likely
to appear in utterance examples for OtherServicesIntent, such as
“mortgages” and “rates,” while words that appear on the top left
are those that are more likely to appear in utterance examples for
PersonalAccountsIntent, such as “my” and “account.” Words on
the diagonal are likely to appear in utterance examples for both
intents, for example, “savings” or “what.”

Learning that certain words appear frequently in both intents’
utterance examples can help you fine-tune the utterance examples
to improve classification confidence and accuracy.

One way to do so is by adding more distinct words or by even
rephrasing each intent’s utterance examples that include the words
frequently in both so as to render them more distinguishable.

The advantage of using Scattertext is that it’s possible to get value
from the tool even for small data sets, such as my toy example with
only seven utterance examples for each intent. Clearly, the more
utterance examples per intent you have, the more complicated
it becomes to find the differences and similarities among them.
Scattertext can help you appreciate the differences and similarities
in a rapid visual way.

import scattertext as st
import space
import pandas as pd

examples_data_location = 'example.csv'

two_df = pd.read_csv(examples_data_location, encoding = 'utf8')

nlp = spacy.en.English()

corpus = st.CorpusFromPandas(two_df,
 category_col='intent',
 text_col='utterance',
 nlp=nlp).build()

html = st.produce_scattertext_explorer(corpus,
 category='PersonalAccountsIntent',category_name='PersonalAccountsIntent',
 not_category_name='OtherServicesIntent', width_in_pixels=1000)
open("MSDN-Visualization.html", 'wb').write(html.encode('utf-8'))

Figure 2 Code for Scattertext Visualization

Figure 3 Scattertext Visualization

0718msdn_TopolLUIS_v3_22-27.indd 24 6/11/18 11:02 AM

/update/2018/07

Help & Manual Professional from $586.04
Help and documentation for .NET and mobile applications.

• Powerful features in an easy, accessible and intuitive user interface

• As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

• Single source, multi-channel publishing with conditional and customized output features

• Output to responsive HTML, CHM, PDF, MS Word, ePUB, Kindle or print

• Styles and Templates give you full design control

BEST SELLER

www.componentsource.com

DevExpress DXperience 18.1 from $1,439.99
The complete range of DevExpress .NET controls and libraries for all major Microsoft platforms.

• WinForms - New TreeMap control, Chart series types and Unbound Data Source

• WPF - New Wizard control and Data Grid scrollbar annotations

• ASP.NET - New Vertical Grid control, additional Themes, Rich Editor Spell Checking and more

• Windows 10 Apps - New Hamburger Sub Menus, Splash Screen and Context Toolbar controls

• CodeRush - New debug visualizer expression map and code analysis diagnostics

BEST SELLER

© 1996-2018 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

USA
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

We accept purchase orders.
Contact us to apply for a credit account.

Europe (Ireland)
ComponentSource
Unit 1E & 1F
Core B, Block 71
The Plaza, Park West
Dublin 12
Ireland

Europe (UK)
ComponentSource
The White Building
33 King’s Road
Reading, Berkshire
RG1 3AR
United Kingdom

Asia Pacific
ComponentSource
7F Kojimachi Ichihara Bldg
1-1-8 Hirakawa-cho
Chiyoda-ku
Tokyo, 102-0093
Japan

www.componentsource.com

(888) 850-9911
Sales Hotline - US & Canada:

PBRS (Power BI Reports Scheduler) from $8,132.21
Data Driven Distribution for Power BI Reports & Dashboards.

• A comprehensive set of job (schedule) types gives you the power to automate delivery in
Power BI

• Automate report delivery & send reports to printer, fax, folder, FTP, DropBox, SharePoint & email

• Contains powerful system event triggered, data-driven and business process work� ow functions

• Respond instantly by � ring o� reports and automation scripts when an event occurs

NEW RELEASE

LEADTOOLS Document Imaging SDKs V19 from $2,995.00 SRP

Add powerful document imaging functionality to desktop, tablet, mobile & web applications.

• Universal document viewer & conversion framework for PDF, O� ce, CAD, TIFF & more

• OCR, MICR, OMR, ICR and Forms Recognition supporting structured & unstructured forms

• PDF SDK with text edit, hyperlinks, bookmarks, digital signature, forms, metadata

• Barcode Detect, Read, Write for UPC, EAN, Code 128, Data Matrix, QR Code, PDF417

• Zero-footprint HTML5/JavaScript UI Controls & Web Services

BEST SELLER

Untitled-3 1 6/7/18 11:21 AM

http://www.componentsource.com

msdn magazine26 Cognitive Services

It’s also worth noting that you can use Scattertext in a similar
fashion when you have more than two intents by comparing pairs
of intents at a time.

Explaining Intent Classifications Using LIME
Now let’s look at an open source tool called LIME, or Local Inter-
pretable Model-Agnostic Explanation, which allows you to explain
intent classification. You’ll find the source code and a tutorial at bit.ly/
2I4Mp9z, and an academic research paper entitled, “Why Should I Trust
You?: Explaining the Predictions of Any Classifier” (bit.ly/2ocHXKv).

LIME is written in Python and you can follow the installation
instructions in the tutorial before running the code in Figure 4.

LIME allows you to explain classifiers for different modalities,
including images and text. I’m going to use the text version of
LIME, which outputs word-level insights about the various words
in the utterance. While I’m using LUIS as my classifier of choice, a
wide range of classifiers can be fed into LIME; they’re essentially
treated as black boxes.

The text version of LIME works roughly as follows: It randomly
creates multiple modifications or samples of the input utterance

by removing any number of words, then calls LUIS on each one
of them. The number of samples is controlled by the parameter
num_samples, which in Figure 4 is set to 500. For the example
utterance, modified utterances can include variations such as “are
annual for accounts” and “what annual rates for my savings.”

LIME uses the confidence scores returned from LUIS to fit a linear
model that then estimates the effects of single words on classification
confidence scores. This estimation helps you identify how the confi-
dence score is likely to change if you were to remove words from the
utterance and run the classifier again (as I show later).

The only major requirement for the classifier is to output con-
fidence scores for the classified labels. Confidence scores over the

Figure 4 Using LIME to Analyze Utterances

import requests
import json
from lime.lime_text import LimeTextExplainer
import numpy as np

def call_with_utterance_list(utterance_list) :

 scores=np.array([call_with_utterance(utterance) for utterance in
 utterance_list])

 return scores

def call_with_utterance(utterance) :

 if utterance is None :
 return np.array([0, 1])

 app_url ='your_url_here&q='
 r = requests.get(app_url+utterance)

 json_payload = json.loads(r.text)

 intents = json_payload['intents']

 personal_accounts_intent_score =
 [intent['score'] for intent in intents if intent['intent'] ==

 'PersonalAccountsIntent']
 other_services_intent_score = [intent['score'] for intent in intents if
 intent['intent'] == 'OtherServicesIntent']
 none_intent_score = [intent['score'] for intent in intents if
 intent['intent'] == 'None']

 if len(personal_accounts_intent_score) == 0 :
 return np.array([0, 1])

 normalized_score_denom = personal_accounts_intent_score[0]+
 other_services_intent_score[0]+none_intent_score[0]

 score = personal_accounts_intent_score[0]/normalized_score_denom

 complement = 1 - score

 return (np.array([score, complement]))

if __name__== "__main__":

 explainer = LimeTextExplainer(class_names=['PersonalAcctIntent', 'Others'])
 utterance_to_explain = 'What are annual rates for my savings accounts'
 exp = explainer.explain_instance(utterance_to_explain,
 call_with_utterance_list, num_samples=500)
 exp.save_to_file('lime_output.html')

Figure 5 LIME Output for the “What Are Annual Rates for My Savings Accounts?” Utterance

LIME allows you to explain
classifiers for different modalities,

including images and text.

0718msdn_TopolLUIS_v3_22-27.indd 26 6/11/18 11:02 AM

http://bit.ly/2I4Mp9z
http://bit.ly/2I4Mp9z
http://bit.ly/2ocHXKv

27July 2018msdnmagazine.com

different categories are treated as a probability distribution, and
therefore should be in the range of [0,1] and sum to 1. LUIS out-
puts confidence scores in that range for the defined intents and
the additional None intent, but those aren’t guaranteed to sum to
1. Therefore, when using LIME, I’ll normalize the LUIS scores to
sum to 1. (This is done in the function call_with_utterance.)

The code listed in Figure 4 uses LIME to produce an explanation
about the prediction for the utterance, “what are annual rates for
my savings accounts?” It then generates an HTML visualization,
which is presented in Figure 5.

In Figure 5 you can see the predicted probabilities for the
utterance, focused here on PersonalAccountsIntent rather than
the two other intents, OtherServicesIntent and None. (Note that
the probabilities are very close to but not exactly the same as the
confidence scores output by LUIS due to normalization.) You can
also see the most significant words for classifying the intent as
PersonalAccountsIntent (those are words on top of the blue bars
and are also highlighted in blue in the utterance text). The weight
of the bar indicates the effect on the classification confidence score
should the word be removed from the utterance. So, for example,
“my” is the word with the most significant effect for detecting the
utterance’s intent in this case. If I were to remove it from the utter-
ance, the confidence score would be expected to reduce by 0.30,
from 0.56 to 0.26. This is an estimation generated by LIME. In
fact, when removing the word and feeding the “what are annual
rates for savings accounts?” utterance into LUIS, the result is that
the confidence score for PersonalAccountsIntent is 0.26 and the
intent is now classified as OtherServicesIntent, with a confidence
score of about 0.577 (see Figure 6).

Other significant words are “accounts” and “savings,” which together
with “my” provide similar insights to the ones provided by Scattertext.

Two important words with significant negative weights are
“annual” and “rates.” This means that removing them from the
utterance would increase the confidence scores for the utterance
to be classified as PersonalAccountsIntent. Scattertext showed
that “rates” is more common in utterance examples for Other
ServicesIntent, so this isn’t a big surprise.

However, there is something new to be learned from LIME—
the word “annual” is significant for LUIS in determining that the
intent in this case doesn’t belong in the PersonalAccountsIntent,
and removing it is expected to increase the confidence score for
PersonalAccountsIntent by 0.27. Indeed, when I remove annual
before feeding the utterance, I get a higher confidence score for
the PersonalAccountsIntent intent, namely 0.71 (see Figure 7).

In this way, LIME helps you identify significant words that drive
classification confidence scores. It can thus provide insights that
help you fine-tune your utterance examples to improve intent
classification accuracy.

Wrapping Up
I have shown that when developing an application based on NLU,
intent prediction for some utterances can be rather challenging
and can be helped by a better understanding of how to fine-tune
utterance examples in order to improve classification accuracy.

The task of understanding word-level differences and similarities
among utterances can yield concrete guidance in the fine-tuning process.

I’ve presented two open source tools, Scattertext and LIME,
that provide word-level guidance by identifying significant words
that affect intent prediction. Scattertext visualizes differences
and similarities of word frequencies in utterance examples, while
LIME identifies significant words affecting intent classification
confidence scores.

I hope these tools will help you build better NLU-based products
using LUIS.	 n

Zvi Topol has been working as a data scientist in various industry verticals,
including marketing analytics, media and entertainment and Industrial Inter-
net of Things. He has delivered and lead multiple machine learning and analytics
projects including natural language and voice interfaces, cognitive search, video
analysis, recommender systems and marketing decision support systems. He can
be contacted at zvitop@gmail.com.

Thanks to the following Microsoft technical expert who reviewed this article:
Ashish Sahu

{
 "query": "what are annual rates for savings accounts",
 "topScoringIntent": {
 "intent": "OtherServicesIntent",
 "score": 0.577525139
 },
 "intents": [
 {
 "intent": "OtherServicesIntent",
 "score": 0.577525139
 },
 {
 "intent": "PersonalAccountsIntent",
 "score": 0.267547846
 },
 {
 "intent": "None",
 "score": 0.00754897855
 }
],
 "entities": []
}

Figure 6 Results for the “What Are Annual Rates for My
Savings Accounts?” Query

{
 "query": "what are rates for my savings accounts",
 "topScoringIntent": {
 "intent": "PersonalAccountsIntent",
 "score": 0.71332705
 },
 "intents": [
 {
 "intent": "PersonalAccountsIntent",
 "score": 0.71332705
 },
 {
 "intent": "OtherServicesIntent",
 "score": 0.18973498
 },
 {
 "intent": "None",
 "score": 0.007595492
 }
],
 "entities": []
}

Figure 7 Results for the “What Are Rates for My Savings
Accounts?” Query

0718msdn_TopolLUIS_v3_22-27.indd 27 6/11/18 11:02 AM

mailto:zvitop@gmail.com
http://msdnmagazine.com

TX Text Control
Automate your reports and create beautiful documents in
Windows Forms, WPF, ASP.NET and Cloud applications.
Text Control Reporting combines powerful reporting features with an easy-to-use,
MS Word compatible word processor. Users create documents and templates
using ordinary Microsoft Word skills.

Download a free trial at
www.textcontrol.comwww.textcontrol.com

© 2018 Text Control GmbH. All rights reserved. All other product and brand names are trademarks and/or registered trademarks of their respective owners.

TX Text Control .NET Server for ASP.NET
Complete reporting and word processing for ASP.NET Web Forms and MVC

Give your users a WYSIWYG, MS Word compatible, HTML5-based,
cross-browser editor to create powerful reporting templates and
documents anywhere.

Text Control Reporting combines the power of a reporting tool and an
easy-to-use WYSIWYG word processor - fully programmable and
embeddable in your application.

Replacing MS Office Automation is one of the most typical use cases.
Automate, edit and create documents with Text Control UI and non-UI
components.

Untitled-6 2 1/3/18 1:21 PM

http://www.textcontrol.com

TX Text Control
Automate your reports and create beautiful documents in
Windows Forms, WPF, ASP.NET and Cloud applications.
Text Control Reporting combines powerful reporting features with an easy-to-use,
MS Word compatible word processor. Users create documents and templates
using ordinary Microsoft Word skills.

Download a free trial at
www.textcontrol.comwww.textcontrol.com

© 2018 Text Control GmbH. All rights reserved. All other product and brand names are trademarks and/or registered trademarks of their respective owners.

TX Text Control .NET Server for ASP.NET
Complete reporting and word processing for ASP.NET Web Forms and MVC

Give your users a WYSIWYG, MS Word compatible, HTML5-based,
cross-browser editor to create powerful reporting templates and
documents anywhere.

Text Control Reporting combines the power of a reporting tool and an
easy-to-use WYSIWYG word processor - fully programmable and
embeddable in your application.

Replacing MS Office Automation is one of the most typical use cases.
Automate, edit and create documents with Text Control UI and non-UI
components.

Untitled-6 3 1/3/18 1:21 PM

http://www.textcontrol.com

msdn magazine30

Blockchain has captured the attention of the business
and technology world as a way to streamline business processes,
verify transactions, and reduce the potential for fraud. This article
introduces Blockchain as a Service (BaaS) in Microsoft Azure,
showing how it can be used to build a secured data structure and
create a distributed transactional digital ledger.

There’s plenty of literature on the Internet about blockchain and
how it started as a digital ledger for Bitcoin. A good introductory
article to what blockchain is can be found at bit.ly/2IsoWeJ, and for
a more technical overview on how blockchain works, please refer
to Jonathan Waldman’s “Blockchain Fundamentals” article in the
March 2018 issue of MSDN Magazine (msdn.com/magazine/mt845650).

Blockchain is a secure, shared, distributed ledger that can be pub-
lic, private or consortium (that is, restricted to named members

only). It’s secure because it uses cryptography to create transactions
that are difficult (if not impossible with current computing tech-
nology) with which to tamper. Shared among all nodes or peers in
the chain is a data store and, as you’ll see shortly, business logic in
the form of contracts. A blockchain value is indeed directly linked
to the number of entities that participate in them. Critically, block-
chain data and contracts are distributed, which means that there
are many replicas of the database. And the more replicas there are,
the more authentic it becomes. And finally, blockchain is a digital
ledger, a transactional database that appends only immutable
records of every transaction that occurs.

I’d like to reinforce this point about blockchain being a distributed
ledger. Traditional ledgers are centralized and use third-party sys-
tems, or middlemen, to approve and record transactions. Think of
credit cards, banks, identity management systems and the like. This
approach creates a challenge of trust and scale. Do you trust your
middleman agent to act as a broker for all your transactions? Can
the agent become a single point of failure? Can it be compromised?

In a blockchain, ledgers are distributed across the entire network,
and there’s no need for any third-party system to be in the middle
of a transaction. The technology maintains multiple replicas of
data, as in a peer-to-peer file-sharing system, as each peer obtains
a copy of the entire dataset. No one owns the entire thing, but ev-
eryone possesses a copy of it. Figure 1 depicts this arrangement.

The first blockchain, Bitcoin, emerged in 2009, with distinct limits.
As a digital ledger, it simply records transactions and doesn’t keep

MICROS OF T A ZUR E

Decentralized
Applications with Azure
Blockchain as a Service
Stefano Tempesta

This article discusses:
•	Microsoft offerings for blockchain development

•	Deploying an Ethereum ledger on Azure

•	Publishing a Solidity smart contract

Technologies discussed:
Azure Blockchain, Ethereum, Solidity

Code download available at:
bit.ly/2INgNEP

0718msdn_TempestaService_v3_30-37.indd 30 6/11/18 11:36 AM

http://bit.ly/2INgNEP
http://bit.ly/2IsoWeJ
http://msdn.com/magazine/mt845650

31July 2018msdnmagazine.com

track of digital asset account balances. Ownership of bitcoins is
verified by links to previous transactions, following the immutable
history of blocks in the chain of recorded transactions. Also, Bitcoin
doesn’t define any specific logic on how to handle a transaction
and the conditions, for example, that the two involved parties must
agree upon in a cryptocurrency exchange.

Blockchain technology evolved with the addition of smart contracts,
which are small pieces of code that add logic to transactions. Think
of smart contracts as a computer code representation of legal terms
in a contract for goods or services. New blockchain ledgers emerged
in the market, the most popular being Ethereum (ethereum.org) and
Hyperledger Fabric (hyperledger.org), to add smart contract capability to
the network. In these (let’s call them Blockchain 2.0) digital ledgers,
smart contracts are now stored in a block and are distributed to all
nodes along with related data.

Blockchain 3.0
Bitcoin’s blockchain is often referred to as Blockchain 1.0. It’s a sim-
ple ledger that records transactions in sequence and represents the
state of the network at any given moment. Think of it simply as a
distributed database.

But just as databases have evolved over time by adding logic execution
capability—in the form of stored procedures, for example—
blockchain has introduced smart contracts to handle the logic tier.
However, smart contracts can operate on data only contained in
the block where they’re stored. They can’t access external data or
systems, as calling a service outside of the blockchain breaks the
“circle of trust” that blockchain provides for cryptographic secu-
rity and immutability of transactions. CRM, ERP and payroll sys-
tems all represent external entities that aren’t part of a blockchain,
but may be involved in the exchange of data within a transaction.
Blockchains need a way to securely receive external data, as well
as access to secure execution of off-chain code.

To address this requirement, Microsoft introduced cryptlets as
part of “Blockchain 3.0,” the blockchain of data, logic and cloud
services. Figure 2 shows the progression of features.

Cryptlets are off-chain code modules written in any language
that can execute within a secure, isolated, trusted container and can
communicate over secure channels. Cryptlets extend smart con-
tracts to the outside world by providing services like encryption,
time and date events, external data access, and identity authenti-
cation. Microsoft introduced cryptlets as part of its open source

project code-named “Bletchley” (bit.ly/2Iv9VZz), which has evolved
into the Azure Blockchain Workbench product revealed at the
Microsoft Build developer conference in May.

As described on the Web site, Bletchley is an architectural
approach to building an enterprise consortium blockchain eco-
system. To be clear, this is not a blockchain stack. It’s Microsoft’s
approach to bringing distributed ledger (blockchain) platforms into
the enterprise and building real solutions addressing real business
problems, while keeping the platform open.

Azure Blockchain Workbench (aka.ms/abcworkbench) leverages differ-
ent blockchain ledgers and existing cloud services to enable a robust
blockchain ecosystem for the enterprise. It’s an easy-to-use tool with
a simplified interface that enables users to create end-to-end block-
chain applications that leverage the best of Azure services, including
Azure Active Directory (Azure AD), Azure Key Vault, Azure SQL
Database, Application Insights, Azure Functions and Service Bus.
And it does so around popular blockchains and into a reference
architecture that can be used to build blockchain-based applications.

You can learn more about Azure Blockchain Workbench in the
“Introducing Azure Blockchain Workbench” article I wrote for the
June issue of MSDN Magazine (msdn.com/magazine/mt846726)

Getting back to cryptlets, these provide an approachable way
for developers to use cross-cutting capabilities like integration
into third-party systems and data access. But before I shift focus to
development of decentralized applications on a blockchain, I need
a platform for delivering a secure and integrated solution on public
or private distributed ledgers. Microsoft Azure offers a world-
wide footprint that allows building a hyper-scale, secure data and
execution platform to deliver the next-generation applications on
any blockchain platform.

Figure 2 Evolution of Blockchain

Blockchain 1.0
Simple Ledgers that
Record Transactions

Blockchain 2.0
+ Smart Contracts

Logic Tier

Blockchain 3.0
+ Cloud Servicing

Multilayer Middleware
+ Cryptlets

Figure 1 A Decentralized Distributed Ledger

Traditional System

Centralized System
with Stored Ledger

Blockchain System

Distributed System
with Distributed Ledger

Cryptlets are off-chain code
modules that can execute

within a secure, isolated, trusted
container and can communicate

over secure channels.

0718msdn_TempestaService_v3_30-37.indd 31 6/11/18 11:36 AM

http://ethereum.org
http://hyperledger.org
http://bit.ly/2Iv9VZz
http://aka.ms/abcworkbench
http://msdn.com/magazine/mt846726
http://msdnmagazine.com

msdn magazine32 Microsoft Azure

Blockchain as a Service
Blockchain on Azure (bit.ly/2rQUO5q) provides a rapid, low-cost,
low-risk platform for building and deploying blockchain appli-
cations. Azure, basically, offers Blockchain as a Service (BaaS), by
providing several easy-to-deploy, enterprise-ready templates for
the most popular ledgers, including Ethereum, Quorum, Hyper-
ledger Fabric, Corda and more.

Enough with the sales pitch, let’s investigate some key capabilities
of Azure BaaS, before diving into the configuration of a specific
ledger in the Azure portal. Azure Blockchain consists of:

• �Single-node ledgers to simulate production for multiple
divisions within a single organization.

• �Multi-node ledgers to simulate production for multiple
divisions within multiple organizations.

• �Tools for development of decentralized applications distrib-
uted on a blockchain.

Decentralized applications (dApps) are applications that run on
a peer-to-peer network of computers rather than a single computer.
In blockchain context, think of a dApp as a client application
that communicates to a smart contract for interacting with the
blockchain network. A good introduction to dApps can be found
on BlockchainHub at bit.ly/2rRkijj.

The key characteristics of building a blockchain infrastructure
in Azure are:

• �Establish a secure environment that exposes protected end-
points. This can be done via Azure Virtual Networks, Azure
App Services VNet Integration or Network Security Groups.

• �Develop smart contracts, using any of the available development
tools, such as Blockstack Core, Ethereum Studio or Truffle.

• �Automate deployment of participant components, both virtual
machines and Platform-as-a-Service components. This can be
enabled by Azure Resource Manager and PowerShell scripts.

• �Protect access to data and logic, with user-level authenti-
cation and authorization, by implementing Azure AD to
secure apps and APIs.

• �In general, build an architecture for enterprise solution
integration with a blockchain ledger, leveraging Azure
enterprise capabilities and worldwide distribution.

Azure BaaS, in a nutshell, represents not just a public cloud host-
ing provider for distributed ledgers, but an organic and integrated
platform for building and delivering decentralized applications
that run on a blockchain technology. Figure 3 illustrates the
platform architecture.

Now let’s explore the digital ledger provisioning capabilities of
Azure BaaS. First, I need to access Azure portal (portal.azure.com)
and create a new service from the Azure Marketplace | Blockchain
section. I can select from several digital ledger technologies—in
this case I’ll create an Ethereum Consortium multi-node ledger—
and quickly provision my blockchain network in Azure.

Ethereum Consortium
The Ethereum Consortium template deploys an Ethereum multi-
member network, consisting of a set of mining nodes and transaction
nodes. Provisioning can take up to 20 minutes, depending on the size
of the network, at which point I can configure additional Ethereum
accounts and get started with smart contract and dApp development
through the administrator Web page.

The provisioning process guides you through five steps to enter
the necessary configuration settings for provisioning the Ethereum
ledger in Azure:

Step 1: Configure basic settings, which include a Resource prefix
for naming all the generated Azure resources provisioned in the
assigned Resource group, authentication credentials as admin of all
the deployed virtual machines and the Azure region of deployment.

Step 2: Address network size and performance. You may want to
specify the number of members in the consortium (up to 12), the num-
ber of mining nodes per member (mining nodes record transactions
within a blockchain network), storage replication (locally redundant
or geo-redundant) and performance. You can also set the number
of load-balanced transaction nodes, which represents the point of
interaction of users or applications with the deployed blockchain.

Step 3: This step is specific to Ethereum nodes. I can specify
the Ethereum Network ID, a unique value that identifies the net-
work and will be used by nodes to peer with each other. Also, I
can specify how the first block, called Genesis, will be generated, Figure 3 Azure Blockchain-as-a-Service Stack

Azure-Azure Stack

Anywhere

API (Message-Based)

Secrets,
Control &

Configuration

Runtime
Environment

Services

Transaction
Builder

& Router

Blockchains/Distributed Ledgers

The Ethereum Consortium
template in Azure Blockchain

consists of a set of mining nodes
and transaction nodes that can

deployed in minutes.

Azure Blockchain provides a
rapid, low-cost, low-risk platform

for building and deploying
blockchain applications.

0718msdn_TempestaService_v3_30-37.indd 32 6/11/18 11:36 AM

http://bit.ly/2rQUO5q
http://bit.ly/2rRkijj
http://portal.azure.com

Where you need us most.

magazine

MSDN.microsoft.com

Untitled-3 1Untitled-3 1 4/9/18 12:24 PM4/9/18 12:24 PM

http://MSDN.microsoft.com

msdn magazine34 Microsoft Azure

either automatically by the platform or manually by providing
my own JSON file.

Step 4: Before I deploy the resources in the Ethereum Consor-
tium ledger, I’m presented with a summary of the configuration
settings I entered. From here, I can download a JSON template
file to automate deployment of a similar resource set with Azure
Resource Manager. Figure 4 anticipates the Azure resources to be
deployed in the provisioning of the Ethereum ledger, along with a
snippet of the template file.

This template file can be used to automate deployment of similar
resources in the future, using a combination of .NET or PowerShell scripts.

The C# code in Figure 5 describes the DeploymentHelper class
generated by the template for automating the deployment of the
identified Azure resources. You need to reference the following
packages to run the code:

• �Microsoft.Azure.Management.Authorization
• �Microsoft.Azure.Management.ResourceManager
• �Microsoft.Rest.ClientRuntime.Azure.Authentication

Similarly, the PowerShell script signs into an Azure subscrip-
tion, registers the necessary resource providers and then starts
the deployment of the resources identified in the template file, as
shown in Figure 6.

The entire solution, consisting of template and script files, is
available for download from my GitHub repository at bit.ly/2INgNEP.

Once that’s done, review the terms of use and licensing con-
ditions, and click Create to deploy the resources. In less than 20
minutes, you have a fully functional blockchain ledger up and
running. Just don’t forget to save important information needed
for developing dApps, including:

• �RPC-Endpoint: You need this address to establish com-
munication between a dApp development environment,
such as Ethereum Remix and the consortium blockchain.

• �SSH Info: You need credentials to sign into the blockchain
environments and configure parameters, like most typically for
unlocking the Coinbase account and start mining new blocks.

Coinbase is my digital wallet, which contains my signature keys
used to hash a block, and my Ether, the cryptocurrency of Ethereum,
earned as part of the mining process. When deploying a new Ethe-
reum Consortium ledger in Azure, this account is initially locked,
so I need to unlock it before I can publish smart contracts. With
the help of SSH, I connect to a transaction node of the Ethereum
Consortium network and unlock the Coinbase account, like so:

geth attach -- opens the Geth console
personal.unlockAccount(eth.coinbase)

When prompted for a passphrase, I enter the gethadmin pass-
word that I specified in Step 1 of the configuration wizard (not the
Ethereum private key passphrase). By default, this action unlocks
the Coinbase account for 5 minutes. You can change the dura-
tion using a different signature of the unlockAccount method,
as shown here:

class DeploymentHelper
{
 string subscriptionId = "your-subscription-id";
 string clientId = "your-service-principal-clientId";
 string clientSecret = "your-service-principal-client-secret";
 string resourceGroupName = "resource-group-name";
 string deploymentName = "deployment-name";
 string resourceGroupLocation = "resource-group-location";
 // Must be specified for creating a new resource group
 string pathToTemplateFile = "path-to-template.json-on-disk";
 string pathToParameterFile = "path-to-parameters.json-on-disk";
 string tenantId = "tenant-id";

 public async void Run()
 {
 // Try to obtain the service credentials
 var serviceCreds = await ApplicationTokenProvider.LoginSilentAsync(
 tenantId, clientId, clientSecret);

 // Read the template and parameter file contents
 JObject templateFileContents =
 GetJsonFileContents(pathToTemplateFile);
 JObject parameterFileContents =
 GetJsonFileContents(pathToParameterFile);

 // Create the resource manager client
 var resourceManagementClient =
 new ResourceManagementClient(serviceCreds);
 resourceManagementClient.SubscriptionId = subscriptionId;

 // Create or check that resource group exists
 EnsureResourceGroupExists(resourceManagementClient, resourceGroupName,
 resourceGroupLocation);

 // Start a deployment
 DeployTemplate(resourceManagementClient, resourceGroupName, deploymentName,
 templateFileContents, parameterFileContents);
 }

Figure 5 The DeploymentHelper Class

Figure 4 Resource Template File for Ethereum Consortium Multi-Node Ledger

0718msdn_TempestaService_v3_30-37.indd 34 6/11/18 11:36 AM

http://bit.ly/2INgNEP

Americas: +1 903 306 1676 EMEA: +44 141 628 8900 Oceania: +61 2 8006 6987
sales@asposeptyltd.com

Untitled-3 1 6/7/18 1:14 PM

mailto:sales@asposeptyltd.com
https://downloads.aspose.com

msdn magazine36 Microsoft Azure

eth.coinbase -- address of the coinbase account
personal.unlockAccount('address', 'passphrase', 'duration') --
 unlocking the account for a longer time period

If you’re wondering what the “geth” command stands for, it’s a
multipurpose command-line tool that runs a full Ethereum node
implemented in Go.

Once the Coinbase account is unlocked, this represents time
zero, when the network starts. After this point, nodes can accept
transactions. Transactions could be in the form of creation of
accounts, movement of ether, creation of smart contracts, or any
change to the state of the blockchain. Then, at a periodic time con-
figured for the network, the network mines the next block. This
block is a hash calculated by combining hashes of the transactions
executed between the last block and now, plus the hash from the
previous block and a nonce—a sequence of bits in a block that can
be adjusted in order to try to satisfy the proof-of-work condition.

This is the essence of mining. This value makes satisfying “proof
of work” a difficult computational task that depends on luck or
brute force. The block is then accepted by the network by consen-
sus, and so you have the first two blocks in your chain, and so on.

Developing Smart Contracts
It would take a whole book to go through the details of develop-
ing smart contracts in Ethereum. In this article, I want to offer
pointers to start with and understand the landscape of technologies
and frameworks in use.

To write and deploy smart contracts in Ethereum, you can use
any of the development environment available in Azure, or access a
completely external browser-based IDE like Ether Camp (ether.camp)
or Ethereum Remix (remix.ethereum.org).

In terms of programming languages, Solidity (solidity.readthedocs.io)
is a popular contract-oriented language for blockchain program-
ming, with a JavaScript-like syntax.

On the client side, programming languages that support inter-
acting with an Ethereum node include C#, C++, JavaScript and
more. It’s possible to write C# code using a library like NEthereum
(nethereum.com), a fully managed .NET integration library for
Ethereum that allows interaction with Ethereum clients like geth,
eth or parity using RPC. The library has very similar functionality
to the JavaScript Ethereum Web3 RPC Client Library, which is the
de-facto standard for blockchain client interoperability.

For example, to make a Smart Contract call via NEthereum, I
need to do the following:

• �Obtain the smart contract address and Application Binary
Interface (ABI). An ABI is the interface to call functions in
a smart contract and get data back from an Ethereum node.

• �Obtain the function signature on the smart contract to be invoked.
• �Unlock the Ethereum account making the call with the

account’s passphrase.
• �Make the call to the smart contract.

The code snippet in Figure 7 shows a few very basic steps, using
the NEthereum library.

The invoked smart contract, written in Solidity, would look like
a ballot contract that exposes a vote method, which accepts a pro-
posal number in input. When a vote is cast, the voted flag on the
voter (the message sender) is set to true to prevent double voting,

// Obtain the contract ABI
abi = db.GetContract(ballot.ContractID);

// Get the function address to call on the smart contract
var func = web3.Eth.GetContract(
 abi,
 ballot.ContractID).GetFunction("vote");

// Unlock the account so you can call the smart contract
string passphrase = db.GetAccountPassphrase(agreement.OriginatorAccount);
bool success = await web3.Personal.UnlockAccount.SendRequestAsync(
 ballot.OriginatorAccount,
 passphrase,
 120);

// Make the smart contract call
if (success)
{
 object[] args = new object[] {
 id,
 ballot.OriginatorAccount,
 ballot.CounterSigAccount,
 123 /* sample proposal number to vote for */ };

 // Call the "vote" function on the smart contract
 await func.SendTransactionAsync(ballot.OriginatorAccount, args);
}

Figure 7 Calling a Smart Contract

sign in
Write-Host "Logging in...";
Login-AzureRmAccount;

select subscription
Write-Host "Selecting subscription '$subscriptionId'";
Select-AzureRmSubscription -SubscriptionID $subscriptionId;

Register RPs
$resourceProviders = @("microsoft.compute","microsoft.
resources","microsoft.network");
if($resourceProviders.length) {
 Write-Host "Registering resource providers"
 foreach($resourceProvider in $resourceProviders) {
 RegisterRP($resourceProvider);
 }
}

#Create or check for existing resource group
$resourceGroup = Get-AzureRmResourceGroup -Name $resourceGroupName
-ErrorAction SilentlyContinue
if(!$resourceGroup)
{
 Write-Host "Resource group '$resourceGroupName' does not exist.
 To create a new resource
 group, please enter a location.";
 if(!$resourceGroupLocation) {
 $resourceGroupLocation = Read-Host "resourceGroupLocation";
 }
 Write-Host "Creating resource group '$resourceGroupName' in location
 '$resourceGroupLocation'";
 New-AzureRmResourceGroup -Name $resourceGroupName
 -Location $resourceGroupLocation
}
else{
 Write-Host "Using existing resource group '$resourceGroupName'";
}

Start the deployment
Write-Host "Starting deployment...";
if(Test-Path $parametersFilePath) {
 New-AzureRmResourceGroupDeployment -ResourceGroupName $resourceGroupName
 -TemplateFile $templateFilePath -TemplateParameterFile
$parametersFilePath;
} else {
 New-AzureRmResourceGroupDeployment -ResourceGroupName $resourceGroupName
 -TemplateFile $templateFilePath;
}

Figure 6: Starting the Deployment

0718msdn_TempestaService_v3_30-37.indd 36 6/11/18 11:36 AM

http://remix.ethereum.org
http://ether.camp
http://solidity.readthedocs.io
http://nethereum.com

37July 2018msdnmagazine.com

and the proposal counter is increased, considering a weight for the
vote itself. Figure 8 shows the code for this.

Please note that this is Solidity code, a strongly typed language with
JavaScript-like syntax, with a few variants, like the contract, struct and
address keywords, or the triple slash (“///”) for a comment. I use Ethe-
reum Remix for development of smart contracts in Solidity, which
provides a Web-based IDE for development, testing and deployment.

Azure Blockchain vNext
Let’s look at what the future looks like in the Microsoft vision for
blockchain technology. Coming soon, the Microsoft Confidential
Consortium (Coco) Framework is an open source system that
enables high-scale, confidential blockchain networks that meet all
key enterprise requirements for confidentiality, governance and
performance, and at the same time provide a means to accelerate
production enterprise adoption of blockchain technology.

Coco (bit.ly/2Ior8YA) brings together the power of existing block-
chain protocols, trusted execution environments, distributed
systems and cryptography to enable enterprise-ready blockchain
networks that deliver:

• �Throughput and latency approaching database speeds
• �Richer, more flexible, business-specific confidentiality models
• �Network policy management through distributed governance
• �Support for non-deterministic transactions
• �Reduced energy consumption

It’s important to note that Coco isn’t a standalone blockchain
protocol. Rather, it provides a trusted foundation with which
existing blockchain protocols such as Ethereum, Quorum, Corda
and others can be integrated to deliver complete, enterprise-ready
ledger solutions. Coco is designed to be open and compatible with
any blockchain protocol. It achieves this through the use of trusted
execution environments (TEE), such as Intel Software Guard Exten-
sions (SGX) and Windows Virtual Secure Mode (VSM), to enable
the creation of a trusted network of physical nodes on which to run a
distributed ledger. Figure 9 shows the Coco Framework architecture.

Coco provides code assets and ARM template deployment
scripts for the scaffolding needed to create a blockchain network,
gateway API and Web application. It also provides for Azure AD
and Azure Key Vault integration, and supports SQL databases
for collecting on- and off-chain data. Finally, it provides sup-
porting code and services for block hashing and signing. Coco
uses Azure Event Hubs at its core to add new capabilities, such
as sending raw data to Azure Data Lake or providing transaction
data to Azure Search.

Coco makes it possible to create blockchain applications without
writing any code. It uses the metadata provided for smart contracts
to dynamically deliver a contextual UX for participants. Because
the framework populates SQL databases as an off-chain store, it
enables an organization to leverage existing skills and tools to light
up additional capabilities such as APIs, PowerBI reporting, chat
bots, Azure Data Factory and machine learning.

Microsoft plans to open source the Coco Framework code later
in 2018.

Finally, a word on Azure Blockchain Workbench, which is the
primary mechanism for enterprise customers getting started with
blockchain. Azure Blockchain is a collection of Azure services and
capabilities designed to help enterprises create and deploy a new
class of applications for sharing business processes and data with
multiple, semi-trusted organizations. Currently, customers can
deploy these services into their subscriptions and integrate them
with blockchains available on the Azure Marketplace. With Azure
Blockchain Workbench the heavy lifting is done for them, so they
can focus less on scaffolding and more on logic and smart contracts.

Azure Blockchain Workbench is available now in the Azure
Marketplace (aka.ms/tryworkbench).	 n

Stefano Tempesta is a Microsoft Regional Director and MVP, as well as chapter
leader for CRMUG in Switzerland, the largest community of Dynamics 365/
CRM experts in the world. Tempesta is an instructor of courses about Dynamics
365, blockchain and machine learning, and a regular speaker at international IT
conferences, including Microsoft Ignite and Tech Summit. He founded Blogchain
Space (blogchain.space), a blog about blockchain technologies, writes for MSDN
Magazine and MS Dynamics World, and publishes machine learning experi-
ments on the Azure AI Gallery (gallery.azure.ai).

Thanks to the following Microsoft technical experts for reviewing this article:
James McCaffrey

pragma solidity ^0.4.0;
contract Ballot {

 struct Voter {
 uint weight;
 bool voted;
 uint8 vote;
 }
 struct Proposal {
 uint voteCount;
 }

 address chairperson;
 mapping(address => Voter) voters;
 Proposal[] proposals;

 /// Create a new ballot with different proposals
 function Ballot(uint8 _numProposals) public {
 chairperson = msg.sender;
 voters[chairperson].weight = 1;
 proposals.length = _numProposals;
 }

 /// Give a single vote to the given proposal
 function vote(uint8 toProposal) public {
 Voter storage sender = voters[msg.sender];
 if (sender.voted || toProposal >= proposals.length) return;
 sender.voted = true;
 sender.vote = toProposal;
 proposals[toProposal].voteCount += sender.weight;
 }
}

Figure 8 A Ballot Contract in Solidity Code

Figure 9 High-Level Overview of the Coco Framework

Ethereum Quorum Corda Hyperledger
Sawtooth ...

dAppdApp dApp dApp dApp dApp dApp dApp dApp

Coco Framework

TEE (Intel SGX, Windows VSM, ...)

0718msdn_TempestaService_v3_30-37.indd 37 6/11/18 11:36 AM

http://bit.ly/2Ior8YA
http://aka.ms/tryworkbench
http://blogchain.space
http://gallery.azure.ai
http://msdnmagazine.com

Join us for TechMentor, August 6 – 8, 2018, as we return to
Microsoft Headquarters in Redmond, WA. In today’s IT world,
more things change than stay the same. As we celebrate the
20th year of TechMentor, we are more committed than ever to
providing immediately usable IT education, with the tools you
need today, while preparing you for tomorrow –
keep up, stay ahead and avoid Winter, ahem, Change.

Plus you’ll be at the source, Microsoft HQ, where you can have
lunch with Blue Badges, visit the company store, and experience
life on campus for a week!

AUGUST 6 – 10, 2018 • Microsoft Headquarters, Redmond, WA

Change is Coming.
Are You Ready?

You owe it to yourself, your company and your
career to be at TechMentor Redmond 2018!

REGISTER NOW FOR
BEST SAVINGS!
Use Promo Code MSDN

EVENT PARTNER PRODUCED BYSUPPORTED BY

Untitled-5 2 5/31/18 4:22 PM

https://www.techmentorevents.com/redmond

CONNECT WITH TECHMENTOR

Twitter
@TechMentorEvent

Facebook
Search “TechMentor”

LinkedIn
Search “TechMentor”

REGISTER NOW FOR
BEST SAVINGS!
Use Promo Code MSDN

In-Depth Training for IT Pros @ Microsoft Headquarters

Client and Endpoint
Management

PowerShell
and DevOps Infrastructure Soft Skills

for ITPros Security Cloud (Public/
Hybrid/Private)

START TIME END TIME TechMentor Pre-Conference Workshops: Monday, August 6, 2018 (Separate entry fee required)

7:30 AM 9:00 AM Pre-Conference Workshop Registration - Coffee and Light Breakfast

9:00 AM 12:00 PM M01 Workshop: How to Prevent all
Ransomware / Malware in 2018 - Sami Laiho

M02 Workshop: Building Office 365 Federated Identity
from Scratch Using AD FS - Nestori Syynimaa

M03 Workshop: Managing Windows Server
with Project Honolulu - Dave Kawula

12:00 PM 2:00 PM Lunch @ The Mixer - Visit the Microsoft Company Store & Visitor Center

2:00 PM 5:00 PM M01 Workshop: How to Prevent all Ransomware /
Malware in 2018 (Continues) - Sami Laiho

M04 Workshop: Master PowerShell Tricks for Windows
Server 2016 and Windows 10 - Will Anderson &

Thomas Rayner

M05 Workshop: Dave Kawula’s Notes from the
Field on Microsoft Storage Spaces Direct

- Dave Kawula
6:30 PM 8:30 PM Dine-A-Round Dinner - Suite in Hyatt Regency Lobby

START TIME END TIME TechMentor Day 1: Tuesday, August 7, 2018
7:00 AM 8:00 AM Registration - Coffee and Light Breakfast

8:00 AM 9:15 AM T01 Enterprise Client Management
in a Modern World - Kent Agerlund

T02 How to Write (PowerShell) Code
that Doesn’t Suck - Thomas Rayner

T03 The Easy Peasy of
Troubleshooting Azure

- Mike Nelson

T04 Nine O365 Security Issues
Microsoft Probably Hasn’t Told You

(and You Probably Don’t Want to Know)
- Nestori Syynimaa

9:30 AM 10:45 AM
T05 Managing Client Health—

Getting Close to the Famous 100%
- Kent Agerlund

T06 The Network is Slow! Or is it?
Network Troubleshooting for Windows

Administrators - Richard Hicks
T07 Getting Started with PowerShell

6.0 for IT Pro’s - Sven van Rijen
T08 The Weakest Link of Office 365

Security - Nestori Syynimaa

11:00 AM 12:00 PM KEYNOTE: What’s Next for OneDrive and Microsoft 365 - Stephen L. Rose, Sr. PMM, One Drive For Business, Microsoft
12:00 PM 1:00 PM Lunch - McKinley / Visit Exhibitors - Foyer

1:00 PM 2:15 PM T09 How to Get Started with Microsoft
EMS Right Now - Peter Daalmans

T10 Back to the Future! Access
Anywhere with Windows 10 Always

on VPN - Richard Hicks
T11 Using Desired State Configuration

in Azure - Will Anderson T12 To Be Announced

2:15 PM 2:45 PM Sponsored Break - Visit Exhibitors - Foyer

2:45 PM 4:00 PM T13 Conceptualizing Azure Resource
Manager Templates - Will Anderson

T14 How to Use PowerShell to Become
a Windows Management SuperHero

- Petri Paavola
T15 Making the Most Out of the Azure

Dev/Test Labs - Mike Nelson T16 To Be Announced

4:00 PM 5:30 PM Exhibitor Reception – Attend Exhibitor Demo - Foyer

START TIME END TIME TechMentor Day 2: Wednesday, August 8, 2018
7:30 AM 8:00 AM Registration - Coffee and Light Breakfast

8:00 AM 9:15 AM
W01 Automated Troubleshooting
Techniques in Enterprise Domains

(Part 1) - Petri Paavola
W02 Troubleshooting Sysinternals

Tools 2018 Edition - Sami Laiho
W03 In-Depth Introduction to Docker

- Neil Peterson
W04 How Microsoft Cloud

Can Support Your GDPR Journey
- Milad Aslaner

9:30 AM 10:45 AM
W05 Automated Troubleshooting
Techniques in Enterprise Domains

(Part 2) - Petri Paavola
W06 What’s New in Windows

Server 1803 - Dave Kawula
W07 Simplify and Streamline Office

365 Deployments the Easy Way
- John O’Neill, Sr.

W08 How to Administer Microsoft
Teams Like a Boss - Ståle Hansen

11:00 AM 12:00 PM TECHMENTOR PANEL: The Future of Windows - Peter De Tender, Dave Kawula, Sami Laiho, & Petri Paavola
12:00 PM 1:00 PM Birds-of-a-Feather Lunch - McKinley / Visit Exhibitors - Foyer
1:00 PM 1:30 PM Networking Break - Exhibitor Raffle @ 1:10 pm (Must be present to win) - Foyer in front of Business Center

1:30 PM 2:45 PM
W09 Putting the Windows Assessment

and Deployment Kit to Work
- John O’Neill, Sr.

W10 Deploying Application
Whitelisting on Windows Pro or

Enterprise - Sami Laiho
W11 Azure is 100% High-Available...

Or Is It? - Peter De Tender
W12 What the NinjaCat Learned from

Fighting Cybercrime - Milad Aslaner

3:00 PM 4:15 PM
W13 The Evolution of a Geek—

Becoming an IT Architect
- Mike Nelson

W14 Advanced DNS, DHCP and IPAM
Administration on Windows Server 2016

- Orin Thomas
W15 Managing Tesla Vehicles
from the Cloud - Marcel Zehner

W16 Nano Server—Containers
in the Cloud - David O’Brien

6:15 PM 9:00 PM Set Sail! TechMentor’s Seattle Sunset Cruise - Buses depart the Hyatt Regency at 6:15pm to travel to Kirkland City Dock

START TIME END TIME TechMentor Day 3: Thursday, August 9, 2018
7:30 AM 8:00 AM Registration - Coffee and Light Breakfast

8:00 AM 9:15 AM TH01 Manage Your Apple Investments
with Microsoft EMS - Peter Daalmans

TH02 Tips and Tricks for Managing
and Running Ubuntu/Bash/Windows
Subsystem for Linux - Orin Thomas

TH03 The OMS Solutions Bakery
- Marcel Zehner

TH04 Getting Started with PowerShell
for Office 365 - Vlad Catrinescu

9:30 AM 10:45 AM TH05 HoloLens, Augmented Reality,
and IT - John O’Neill, Sr.

TH06 A Real-world Social Engineering
Attack and Response - Milad Aslaner

TH07 30 Terrible Habits of Server and
Cloud Administrators - Orin Thomas

TH08 Advanced PowerShell
for Office 365 - Vlad Catrinescu

11:00 AM 12:15 PM
TH09 10 Tips to Control Access to

Corporate Resources with Enterprise
Mobility + Security - Peter Daalmans

TH10 What’s New and Trending
with Microsoft Enterprise Client
Management - Kent Agerlund

TH11 OneNote LifeHack: 5 Steps for
Succeeding with Personal Productivity

- Ståle Hansen

TH12 Managing Virtual Machines
on AWS—Like in Real Life!

- David O’Brien
12:15 PM 2:15 PM Lunch @ The Mixer - Visit the Microsoft Company Store & Visitor Center

2:15 PM 3:30 PM
TH13 Security Implications of

Virtualizing Active Directory Domain
Controllers - Sander Berkouwer

 TH14 Building a New Career in
5 Hours a Week - Michael Bender

TH15 Azure CLI 2.0 Deep Dive
- Neil Peterson

TH16 OpenSSH for Windows Pros
- Anthony Nocentino

3:45 PM 5:00 PM
TH17 Running Hyper-V in Production

for 10 years - Notes from the Field
- Dave Kawula

TH18 Network Sustainability and
Cyber Security Measures

- Omar Valerio
TH19 Azure AD Connect Inside

and Out - Sander Berkouwer
TH20 I Needed to Install 80 SQL
Servers…Fast. Here’s How I Did It!

- Anthony Nocentino

START TIME END TIME TechMentor Post-Conference Workshops: Friday, August 10, 2018 (Separate entry fee required)

8:30 AM 9:00 AM Post-Conference Workshop Registration - Coffee and Light Breakfast

9:00 AM 12:00 PM F01 Workshop: Hardening Your Windows Server Environment
- Orin Thomas

F02 Workshop: Learn the Latest and Greatest Updates to the
Azure Platform IaaS and PaaS Services v2.0 - Peter De Tender

12:00 PM 1:00 PM Lunch - McKinley

1:00 PM 4:00 PM F01 Workshop: Hardening Your Windows
Server Environment (Continues) - Orin Thomas

F02 Workshop: Learn the Latest and Greatest Updates to the Azure
Platform IaaS and PaaS Services v2.0 (Continues) - Peter De Tender

Speakers and sessions subject to change

AGENDA AT-A-GLANCE

techmentorevents.com/redmond

Untitled-5 3 5/31/18 4:22 PM

https://www.techmentorevents.com/redmond
https://www.techmentorevents.com/redmond
https://twitter.com/TechMentorEvent
https://www.facebook.com/techmentorevents
https://www.linkedin.com/

msdn magazine40

If you ever used any version of SignalR for the classic ASP.NET
platform, you should be quite familiar with the concept of a hub.
In SignalR a hub is the component that enables compatible client
and server applications to arrange bidirectional remote procedure
calls, from client to server and from server back to connected clients.

Concretely, in terms of software, a hub is a class that inherits from
a system-provided base class and exposes endpoints for clients to
call. Conceptually speaking, it has a few points in common with
an ASP.NET controller. In particular, it’s the façade that receives
client calls and reacts to them, and is organized around a relatively
small number of related functions. In ASP.NET Core SignalR, the
similarity between hubs and controllers is, in a way, even closer.
This is my third article about ASP.NET Core SignalR for the
Cutting Edge column, and in neither of the previous two arti-
cles did I use a non-empty hub class. Explaining a bit more about
SignalR hubs and how they’re implemented in ASP.NET Core is
one of the purposes of this article. However, I’ll also touch on other
interesting aspects of SignalR, specifically data streaming and the
count of online users.

Hubs on ASP.NET Core SignalR
A hub is the entry point in a message pipeline through which
connected clients and servers exchange messages. Hubs expose their
methods as URLs and process any received parameters via model
binding, in much the same way a canonical controller does. In a
way, a hub is a dedicated controller that operates over two built-in
protocols. The default protocol consists of a JSON object, but
another binary protocol can be used that’s based on MessagePack.
Note that in order to support MessagePack, browsers must support
XHR Level 2. As Level 2 was introduced back in 2012, this might
not be much of an issue today, but if your application requires
support for very old browsers it might be worth noting. A quick
browser check can be made here: caniuse.com/#feat=xhr2.

If any of the connected clients request a SignalR endpoint, the hub
is directly invoked by the SignalR runtime engine. The conversation
takes place over the selected protocol, mostly likely WebSockets. In
order to invoke the server, clients need to hold a connection object.
A Web client would get it as follows:

var clockConnection = new signalR.HubConnection("/clockDemo");
clockConnection.start().then(() => {
 clockConnection.invoke("now");
 });

A client invokes a server endpoint via the “invoke” method on the
connection object. Note that the exact syntax may vary depending

on the actual technology used for the client. The server replies
through the methods defined on the base Hub class, and the con-
versation takes place over the transport protocol of choice, most
often WebSockets, like this:

public class ClockHub : Hub
{
 public Task Now()
 {
 var now = DateTime.UtcNow.ToShortTimeString();
 return Clients.All.SendAsync("now", now);
 }
}

Note that you won’t be able to monitor the various calls using
an HTTP tool like Fiddler. You need something like Chrome
Developer Tools. In all the examples I wrote for my past columns
on SignalR, however, I always used an empty hub class.

The hub class is the official SignalR façade for receiving client
calls, and the fastest way for client/server communication to take
place because of the dedicated pipeline. When the call occurs
through the hub, the SignalR runtime can track and expose all the
available information via the properties of the base Hub class. In
this way, the SignalR connection ID and the entire context of the
call, including any claims of the authenticated user, are available.

In addition, through the hub, developers can handle connect
and disconnect events. Any time a new connection is set up, or
ceased, a hub method is called back. If you use SignalR only as
a way to monitor remote long-running operations, then you
can also trigger the task via a plain controller and inject a hub
context in it for notifications. Or as an alternative, you can invoke
the hub and trigger the task from within the hub. It’s your choice.
SignalR works as an end-to-end framework, a bridge between the
client and the server. Coding logic into the hub is acceptable as
long as the work doesn’t go too deep into the layers of your code.
Otherwise, go through the controller—whether MVC or Web
API—and inject a hub context.

Online Users, Streaming
and Other SignalR Goodies

Cutting Edge DINO ESPOSITO

A hub is the entry point in a
message pipeline through which

connected clients and servers
exchange messages.

0718msdn_EspositoCEdge_v3_40-42.indd 40 6/11/18 11:18 AM

http://caniuse.com/#feat=xhr2

41June 2018msdnmagazine.com

The only difference between using a hub or a controller is that
SignalR can’t track the connection ID when a request goes through
the controller. If the connection ID is relevant to the server task,
then it has to be passed in some way via the URL. All other infor-
mation that forms the SignalR caller context can be retrieved by
the controller via the HTTP request context.

Counting Online Users
Some Web applications find it useful, or just engaging for users, to
show how many connections are currently active. The problem is
not so much tracking when a user connects—there are many end-
points through which you can detect that—but rather when a user
disconnects from the application.

You can audit a login page or the post-authentication step. You
can place a check in some base controller class or in any of the pages
that the user can visit. In general, you can always find a way to
detect when a user connects to the application. The problem is how
the user can leave the application, whether by logging out (easily
traceable) or by navigating away from the page or by shutting
down the browser window. There’s no reliable way to detect when
the user closes the browser window. Yes, browsers usually fire the
beforeunload event when the browser shuts down, but this same
event is also fired whenever you follow a link—even when that
link is within the same application. So it’s not a perfect solution.

A much more reliable way to count users is to keep track of
ASP.NET Core SignalR connections. To do this, you need a fully

functional hub with the connection set up through it. When the
user leaves the browser, or just the application, the connection is
released and listening clients notified. As in ASP.NET Core SignalR,
there’s no support for automatic reconnections, so things are even
easier. All you do is define a global static variable in the hub and
increment its value up or down when a user connects or discon-
nects, as shown in Figure 1. The SignalR runtime in ASP.NET
Core ensures that every connection is closed at some point, and
any new connection effectively refers to a new connection. In short,
the number you get is highly reliable.

There’s one drawback to counting users with SignalR: It only
works if users visit the page that establishes a connection to the
hub where counting takes place. To be on the safe side, you need
to have a SignalR client in nearly any page the user can visit. This
is especially true if you consider that normally the number of
online users is a globally visible value you probably have in all
layouts on which your views are based.

Note that in the sample hub code, the class calls back the con-
nected clients every time a connection is created or closed. Note
also that in this way you only have the total number of users, but
not the list of connection IDs or, in case of authenticated users,
the list of user names. To achieve this, you better use a dictionary
instead of a global counter and add to it entries with connection
IDs or claims, such as the user name.

Another point to consider with reference to the code in Figure
1 is the use of a static variable to count users. A static variable is
per-server, which means that when you scale out you’ll need to
consider how to store shared state in a globally accessible location,
such as a database or a distributed cache.

Pushing Information Back
From within the hub, or the hub context if you connect to the back
end via a controller method, you have many different ways to call
back connected clients. All methods are members exposed by the
Clients object that, in spite of the name, is not a collection, but an
instance of the IClientProxy class. The expressions in Figure 2
indicate the object from which the SendAsync method is invoked.
The SendAsync method takes the name of the client method to
call back and the parameters to pass.

A group is a collection of related clients collectively gathered
under a name. The more natural way of thinking of groups in

public class SampleHub : Hub
{
 private static int Count = 0;
 public override Task OnConnectedAsync()
 {
 Count++;
 base.OnConnectedAsync();
 Clients.All.SendAsync("updateCount", Count);
 return Task.CompletedTask;
 }

 public override Task OnDisconnectedAsync(Exception exception)
 {
 Count--;
 base.OnDisconnectedAsync(exception);
 Clients.All.SendAsync("updateCount", Count);
 return Task.CompletedTask;
 }
}

Figure 1 Counting Connections

Expression Description
Clients.All The notification is broadcast to all connected

clients, regardless of the technology being
used (Web. .NET, .NET Core, Xamarin).

Clients.Client(connectionId) The notification is sent exclusively to the
client listening over the specified connection.

Clients.User(userId) The notification is sent to all clients whose
authenticated user matches the provided
user name.

Clients.Groups(group) The notification is sent to all clients
belonging to the specified group.

Figure 2 Methods for the Server to Call Back Connected Clients

There’s one drawback
to counting users with SignalR:

It only works if users visit the
page that establishes a

connection to the hub where
counting takes place.

0718msdn_EspositoCEdge_v3_40-42.indd 41 6/11/18 11:18 AM

http://msdnmagazine.com

msdn magazine42 Cutting Edge

SignalR is chat rooms. A group is created programmatically simply
adding connection IDs to the group of a given name. Here’s how:

hub.Groups.AddAsync(connectionId, nameOfGroup);

Connected clients receive their data through a callback. This is
only the most common technique. In ASP.NET Core SignalR, you
can also use streaming.

Data Streaming
Probably the most interesting new aspect of SignalR is support
for streaming. Streaming is similar to broadcasting, but it follows
a slightly different model and is essentially a slightly different
way of achieving the same broadcast-style communication. With
SignalR streaming, the hub still needs to poll or listen for data
in order to stream it back. In classic broadcast, the server tells a
client method when new data is available.

In the new streaming model, the client subscribes to a new server
object of type Channel and the server—the hub, actually—yields
new items as they’re captured. At the moment, there’s nothing
like a true stream that flows bytes toward all the connected clients
as they become available, but this model can be supported in
the future. Note that the Channel type has been introduced with
preview2 and is not supported in earlier builds. In earlier builds,
you must use observables instead, which require a reference to
the System.Reactive.Linq NuGet package. The switch between
observables and the new type Channel relates to the lack of prim-
itives in IObservable for working with network backpressure (that

is, telling the server to slow down when the client isn’t processing
messages fast enough).

Figure 3 presents the code for the hub.
The hub offers three methods to start, stop and operate the clock.

A global variable controls the running status of the streaming, and
start and stop methods set the control variable and notify back
client methods as usual in a SignalR hub. The tricky part is the
Tick method. The method name coincides with the name of the
stream to which clients will subscribe. The method returns a chan-
nel object of a given type. In the example, the type is a simple string
but it can be anything more sophisticated.

Every invocation, from client to server or server to client, con-
sists of one party sending an invocation message, and the other
party eventually responding with a completion message that
carries a result or an error. In a SignalR streaming scenario, instead,
the other party responds with multiple messages, each carrying a
data item, before eventually concluding the communication with
a completion message. As a result, the client ends up processing
multiple items even before the completion message is received.

Scaling to Multiple Instances
SignalR keeps all connection IDs in memory, meaning that the
moment the application scales to multiple instances, the broadcast
(but also streaming, as discussed later) is compromised as each
instance would only track a portion of all connected clients. To
avoid that, SignalR supports a Redis-based cache that ensures that
new connections are automatically shared between instances. To
enable Redis, you need the SignalR.Redis package and a call to
the AddRedis method in the ConfigureServices method of the
startup class, like so:

services.AddSignalR()
 .AddRedis("connection string");

The option parameter serves the purpose of specifying the con-
nection string to the running instance of Redis.

Wrapping Up
ASP.NET Core SignalR comes with two significant changes from
the non-Core version. One is the lack of automatic reconnection,
which has an impact on how connect/disconnect and online user
count is handled programmatically. This means that now every
application has to handle connection/disconnection logic and
likely has to identify the difference between a user connecting for
the first time and a user reconnecting due to an error. The other
change is support for data streaming. Data streaming is based on
channels and at the moment only supports specific data items
instead of raw streams.

Finally, my exploration of SignalR lacks one more piece, which
I’ll address in a future column: authenticated users and groups.	n

Dino Esposito has authored more than 20 books and 1,000 articles in his 25-year
career. Author of “The Sabbatical Break,” a theatrical-style show, Esposito is busy
writing software for a greener world as the digital strategist at BaxEnergy. Follow
him on Twitter: @despos.

Thanks to the following Microsoft expert for reviewing this article:
Andrew Stanton-Nurse

public class ClockHub : Hub
{
 private static bool _clockRunning = false;

 public void Start()
 {
 _clockRunning = true;
 Clients.All.SendAsync("clockStarted");
 }

 public void Stop()
 {
 _clockRunning = false;
 Clients.All.SendAsync("clockStopped");
 }

 public ChannelReader<string> Tick()
 {
 var channel = Channel.CreateUnbounded<string>();
 Task.Run(async() => {
 while(_clockRunning)
 {
 var time = DateTime.UtcNow.ToString("HH:mm:ss");
 await channel.Writer.WriteAsync(time);
 await Task.Delay(1000);
 }
 channel.Writer.TryComplete();
 });
 }
}

Figure 3 The Hub Class That Streams Back

The hub offers three methods to
start, stop and operate the clock.

0718msdn_EspositoCEdge_v3_40-42.indd 42 6/11/18 11:18 AM

www.twitter.com/despos

Untitled-1 1Untitled-1 1 6/1/18 10:27 AM6/1/18 10:27 AM

http://www.gdpicture.com

Look Back to Code Forward
Visual Studio Live! (VSLive!™) is thrilled to be returning to Chicago
where developers, software architects, engineers and designers will
“look back to code forward” during four days of unbiased and cutting-
edge education on the Microsoft Platform.

Tackle training on the hottest topics (like .NET Core, Angular, VS2017),
debate with industry and Microsoft insiders (people like Rockford
Lhotka, Deborah Kurata and Brock Allen) and network with your peers—
plus, help us celebrate 25 years of coding innovation as we take a fun
look back at technology and training since 1993. Come experience the
education, knowledge-share and networking at #VSLive25.

Register Now
to Save $400!
Use Promo Code MSDN

SUPPORTED BY

magazine

PRODUCED BYSILVER SPONSOR

September 17-20, 2018
Renaissance

Chicago

1993 - 2018

DEVELOPMENT TOPICS INCLUDE:

DevOps in the
Spotlight

Cloud, Containers
and Microservices

AI, Data and
Machine Learning

Developing New
Experiences

.NET Core
and More

Full Stack
Web Development

Delivery and
Deployment

vslive.com/chicago

Untitled-5 2 5/31/18 4:23 PM

https://www.vslive.com/chicago

CONNECT WITH US

linkedin.com – Join the
“Visual Studio Live” group!

facebook.com –
Search “VSLive”

twitter.com/vslive –
@VSLive

AGENDA AT-A-GLANCE Chicago

DevOps in the
Spotlight

Cloud, Containers
and Microservices

AI, Data and
Machine Learning

Developing New
Experiences

Delivery and
Deployment .NET and More Full Stack Web

Development

START TIME END TIME Pre-Conference Workshops: Monday, September 17, 2018 (Separate entry fee required)

8:00 AM 9:00 AM Pre-Conference Workshop Registration - Coffee and Morning Pastries

9:00 AM 6:00 PM
M01 Workshop: Build a Modern ASP.NET
App in the Cloud with a full CI/CD Pipeline

in VSTS - Brian Randell
M02 Workshop: SQL Server for Developers

- Andrew Brust and Leonard Lobel
M03 Workshop: Distributed Cross-Platform

Application Architecture - Rockford Lhotka and
Jason Bock

6:45 PM 9:00 PM Dine-A-Round

START TIME END TIME Day 1: Tuesday, September 18, 2018
7:00 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM
T01 The State of XAML: Recent
Changes for UWP, WPF, Xamarin

- Billy Hollis
T02 An Introduction to TypeScript

- Jason Bock
T03 SQL Server Security Features for

Developers - Leonard Lobel
T04 Get Started with Git

- Robert Green

9:30 AM 10:45 AM T05 Building Your First Mobile App
with Xamarin Forms - Robert Green

T06 Essential Web Development with
ASP.NET Core - Mark Michaelis

T07 Exploring T-SQL Enhancements:
Windowing and More - Leonard Lobel

T08 DevOps for the SQL Server
Database - Brian Randell

11:00 AM 12:00 PM KEYNOTE: To Be Announced - Amanda Silver, Partner Director of Program Management, Microsoft

12:00 PM 1:30 PM Lunch

1:30 PM 2:45 PM T09 Cross-Platform App Dev with C#
and CSLA .NET - Rockford Lhotka

T10 Assembling the Web—A Tour of
WebAssembly - Jason Bock

T11 Glue for the Internet:
Introducing Azure Event Grid

- Jeremy Likness
T12 Azure DevOps with VSTS,
Docker, and K8 - Brian Randell

3:00 PM 4:15 PM
T13 A Dozen Ways to Mess Up Your
Transition From Windows Forms to

XAML - Billy Hollis
T14 Entity Framework Core 2 For

Mere Mortals - Philip Japikse
T15 Code First in the Cloud:

Serverless .NET with Azure
- Jeremy Likness

T16 Essential C# 8.0
- Mark Michaelis

4:15 PM 5:30 PM Welcome Reception

START TIME END TIME Day 2: Wednesday, September 19, 2018
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM W01 Electron: Desktop Development
For Web Developers - Chris Woodruff

W02 JavaScript for the C# (and Java)
Developer - Philip Japikse

W03 Quantum Computing and the
Future of Software Development

- Jerry Nixon
W04 Building a Stronger Team, One
Strength at a Time - Angela Dugan

9:30 AM 10:45 AM W05 Enhancing UWP Experiences
with Fluent Design - Tony Champion

W06 Architecting and Developing
Microservices Apps - Eric D. Boyd

W07 Sharing C# Code Across
Platforms - Rockford Lhotka

W08 How do You Measure up?
Collect the Right Metrics for the
Right Reasons - Angela Dugan

11:00 AM 12:00 PM General Session: To Be Announced

12:00 PM 1:00 PM Birds-of-a-Feather Lunch

1:00 PM 1:30 PM Dessert Break - Visit Exhibitors - Exhibitor Raffle @ 1:15pm (Must be present to win)

1:30 PM 2:45 PM
W09 Learning The Language Of HTTP
For A Better Data Experience In Your

Mobile Apps - Chris Woodruff
W10 Angular 101
- Deborah Kurata

W11 Power BI: What Have You Done
for Me Lately? - Andrew Brust

W12 Fault Driven Development
- Josh Garverick

3:00 PM 4:15 PM
W13 Building Cross Device

Experiences with Project Rome
- Tony Champion

W14 N Things You Didn’t Know About
the Router - Deborah Kurata

W15 Analytics and AI with Azure
Databricks - Andrew Brust

W16 Core Azure Solutions:
Automation - Josh Garverick

4:30 PM 5:45 PM
W17 Use UWP to Modernize

Your Existing WinForms and WPF
Applications - Walt Ritscher

W18 Tools for Modern Web
Development - Ben Hoelting

W19 Create Intelligent Bots with
Cognitive Services and Azure Search

- Eric D. Boyd

W20 Real World Scrum with Team
Foundation Server & Visual Studio

Team Services - Benjamin Day

6:30 PM 9:00 PM VSLive!’s Windy City Sunset Cruise

START TIME END TIME Day 3: Thursday, September 20, 2018
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM TH01 PowerShell for Developers
- Brian Randell

TH02 Docker for ASP.NET Core
Developers - Michele Leroux

Bustamante
TH03 MVVM and ASP.NET Core

Razor Pages - Ben Hoelting
TH04 Unit Testing & Test-Driven

Development (TDD) for Mere Mortals
- Benjamin Day

9:30 AM 10:45 AM
TH05 From Waterfall to Agile.

Microsoft’s Not-So-Easy Evolution into
the World of DevOps - Abel Wang

TH06 Developing Microservices
Solutions on Azure - Michele Leroux

Bustamante
TH07 Eliminate Code Using Data

Binding in WPF - Paul Sheriff
TH08 C# 7, Roslyn and You

- Jim Wooley

11:00 AM 12:15 PM
TH09 Writing Testable Code and

Resolving Dependencies—DI Kills Two
Birds with One Stone - Miguel Castro

TH10 Effective Data Visualization
- David Giard

TH11 Store Data Locally for Offline
Web Applications - Paul Sheriff

TH12 Improving Code Quality with
Static Analyzers - Jim Wooley

12:15 PM 1:15 PM Lunch

1:15 PM 2:30 PM
TH13 Exposing an Extensibility API
for Your Applications and Services

- Miguel Castro

TH14 Adding Image and Voice
Intelligence to Your Apps with
Microsoft Cognitive Services

- David Giard

TH15 Modern Security Architecture
for ASP.NET Core - Brock Allen

TH16 SQL Server 2017—Intelligence
Built-in - Scott Klein

2:45 PM 4:00 PM TH17 Advanced DevOps—Deep Dive
into Feature Flags - Abel Wang

TH18 Programming with Microsoft
Flow - Walt Ritscher

TH19 Implementing Authorization in
Web Applications and APIs

- Brock Allen
TH20 Databases and Data Lakes—

Bridging the Gap - Scott Klein

Speakers and sessions subject to change

vslive.com/chicago

Untitled-5 3 5/31/18 4:23 PM

https://www.vslive.com/chicago
https://www.vslive.com/chicago
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
https://www.linkedin.com

msdn magazine46

Image classification involves determining what category an input
image belongs to, for example identifying a photograph as one con-
taining “apples” or “oranges” or “bananas.” The two most common
approaches for image classification are using a standard deep neural
network (DNN) or using a convolutional neural network (CNN). In
this article I’ll explain the DNN approach, using the CNTK library.

Take a look at Figure 1 to see where this article is headed. The
demo program creates an image classification model for a subset
of the Modified National Institute of Standards and Technology
(MNIST) dataset. The demo training dataset consists of 1,000
images of handwritten digits. Each image is 28 high by 28 pixels
wide (784 pixels) and represents a digit, 0 through 9.

The demo program creates a standard neural network with 784
input nodes (one for each pixel), two hidden processing layers
(each with 400 nodes) and 10 output nodes (one for each possible
digit). The model is trained using 10,000 iterations. The loss (also
known as training error) slowly decreases and the prediction
accuracy slowly increases, indicating training is working.

After training completes, the demo applies the trained model
to a test dataset of 100 items. The model’s accuracy is 84.00
percent, so 84 of the 100 test images were correctly classified.

This article assumes you have intermediate or better
programming skill with a C-family language, but doesn’t
assume you know much about CNTK or neural networks.
The demo is coded using Python, but even if you don’t
know Python, you should be able to follow along without
too much difficulty. The code for the demo program is pre-
sented in its entirety in this article. The two data files used
are available in the download that accompanies this article.

Understanding the Data
The full MNIST dataset consists of 60,000 images for train-
ing and 10,000 images for testing. Somewhat unusually, the
training set is contained in two files, one that holds all the
pixel values and one that holds the associated label values (0
through 9). The test images are also contained in two files.

Additionally, the four source files are stored in a pro-
prietary binary format. When working with deep neural
networks, getting the data into a usable form is almost
always time-consuming and difficult. Figure 2 shows the
contents of the first training image. The key point is that

each image has 784 pixels, and each pixel is a value between 00h
(0 decimal) and FFh (255 decimal).

Before writing the demo program, I wrote a utility program to
read the binary source files and write a subset of their contents to
text files that can be easily consumed by a CNTK reader object.
File mnist_train_1000_cntk.txt looks like:

|digit 0 0 0 0 0 1 0 0 0 0 |pixels 0 .. 170 52 .. 0
|digit 0 1 0 0 0 0 0 0 0 0 |pixels 0 .. 254 66 .. 0
etc.

Getting the raw MNIST binary data into CNTK format isn’t trivial.
The source code for my utility program can be found at: bit.ly/2ErcCbw.

There are 1,000 lines of data and each represents one image. The
tags “|digit” and “|pixels” indicate the start of the value-to-predict
and the predictor values. The digit label is one-hot encoded where
the position of the 1 bit indicates the digit. Therefore, in the pre-
ceding code, the first two images represent a “5” and a “1.” Each
line of data has 784 pixel values, each of which is between 0 and

Introduction to DNN Image Classification
Using CNTK

Test Run JAMES MCCAFFREY

Code download available at msdn.com/magazine/0718magcode.
Figure 1 Image Classification Using a DNN with CNTK

0718msdn_McCaffreyTestRun_v3_46-52.indd 46 6/11/18 11:00 AM

http://bit.ly/2ErcCbw
http://msdn.com/magazine/0718magcode

47July 2018msdnmagazine.com

255. File mnist_test_100_cntk.txt
has 100 images and uses the same
CNTK-friendly format.

In most neural network prob-
lems, you want to normalize the
predictor values. Instead of directly
normalizing the pixel values in
the data files, the demo program
normalizes the data on the fly, as
you’ll see shortly.

The Demo Program
The complete demo program, with
a few minor edits to save space, is
presented in Figure 3. All normal
error checking has been removed.
I indent with two space characters
instead of the usual four to save
space. Note that the “\” character is
used by Python for line continuation.

The mnist_dnn.py demo has
one helper function, create_reader.
All control logic is in the single main function. Because CNTK is
young and under continuous development, it’s a good idea to add
a comment detailing which version is being used (2.4 in this case).

Installing CNTK can be a bit tricky if you’re new to the Python
world. First you install an Anaconda distribution of Python, which
contains the required Python interpreter, the necessary packages
such as NumPy and SciPy, and useful utilities such as pip. I used
Anaconda3 4.1.1 64-bit, which includes Python 3.5. After installing
Anaconda, you install CNTK as a Python package, not a stand-
alone system, using the pip utility. From an ordinary shell, the
command I used was:

>pip install https://cntk.ai/PythonWheel/CPU-Only/cntk-2.4-cp35-cp35m-win_amd64.whl

Note the “cp35” in the wheel file that indicates the file is for use with
Python 3.5. Be careful; almost all the CNTK installation failures I’ve
seen have been due to Anaconda-CNTK version incompatibilities.

The signature of the reader function is create_reader(path,
input_dim, output_dim, rnd_order, m_swps). The path param-
eter points to a training or test file that’s in CNTK format. The
rnd_order parameter is a Boolean flag that will be set to True for
training data because you want to process training data in random
order to prevent oscillating without making training progress. The
parameter will be set to False when reading test data to evaluate
model accuracy because order isn’t important then. The m_swps
parameter (“maximum sweeps”) will be set to the constant

INFINITELY_REPEAT for training data (so it can be processed
repeatedly) and set to 1 for test data evaluation.

Creating the Model
The demo prepares a deep neural network with:

train_file = ".\\Data\\mnist_train_1000_cntk.txt"
test_file = ".\\Data\\mnist_test_100_cntk.txt"
C.cntk_py.set_fixed_random_seed(1)
input_dim = 784
hidden_dim = 400
output_dim = 10
X = C.ops.input_variable(input_dim, dtype=np.float32)
Y = C.ops.input_variable(output_dim) # 32 is default

It’s usually a good idea to explicitly set the CNTK global random
number seed so your results will be reproducible. The number of
input and output nodes is determined by your data, but the num-
ber of hidden processing nodes is a free parameter and must be
determined by trial and error. Using 32-bit variables is the default
for CNTK and is typical for neural networks because the precision
gained by using 64 bits isn’t worth the performance penalty incurred.

The network is created like so:
with C.layers.default_options(init=
 C.initializer.uniform(scale=0.01)):
 h_layer1 = C.layers.Dense(hidden_dim,
 activation=C.ops.relu, name='hidLayer1')(X/255)
 h_layer2 = C.layers.Dense(hidden_dim,
 activation=C.ops.relu, name='hidLayer2')(h_layer1)
 o_layer = C.layers.Dense(output_dim, activation=None,
 name='outLayer')(h_layer2)
dnn = o_layer # train this
model = C.ops.softmax(dnn) # use for prediction

The Python with statement is a syntactic shortcut to apply a
set of common arguments to multiple functions. Here it’s used
to initialize all network weights to random values between -0.01
and +0.01. The X object holds the 784 input values for an image.
Notice that each value is normalized by dividing by 255 so the
actual input values will be in the range [0.0, 1.0].

 The normalized input values act as input to the first hidden
layer. The outputs of the first hidden layer act as inputs to the

Figure 2 An MNIST Image

It’s usually a good idea to
explicitly set the CNTK global
random number seed so your

results will be reproducible.

0718msdn_McCaffreyTestRun_v3_46-52.indd 47 6/11/18 11:00 AM

http://msdnmagazine.com

Code With Us in
Sunny San Diego!
For the FIRST TIME EVER in our 25 year history, Visual Studio Live!
is heading to San Diego, CA for up to 5 days of practical, unbiased,
Developer training, including NEW intense hands-on labs.

Join us as we dig into the latest features of Visual Studio 2017,
ASP.NET Core, Angular, Xamarin, UWP and more. Code with industry
experts, get practical answers to your current challenges, and
immerse yourself in the Microsoft platform. Plus, help us celebrate
25 years of coding innovation and experience the education,
knowledge-share and networking at #VSLive25.

SUPPORTED BY

magazine

PRODUCED BYSILVER SPONSOR

October 7-11, 2018
Hilton Resort

San Diego

BEGIN WITH IN-DEPTH TRAINING, END WITH EXCITEMENT

Untitled-5 2 5/31/18 4:26 PM

https://www.vslive.com/sandiego

CONNECT WITH US

linkedin.com – Join the
“Visual Studio Live” group!

facebook.com –
Search “VSLive”

twitter.com/vslive –
@VSLive

DevOps in the Spotlight Cloud, Containers
and Microservices

AI, Data and Machine
Learning

Developing New
Experiences

Delivery and Deployment .NET Core and More Full Stack Web
Development

Hands-On Labs

DEVELOPMENT TOPICS INCLUDE:

REGISTER TO JOIN US TODAY
Save $300 When You Register by August 3!
Use Promo Code MSDN

Who Should Attend and Why
We’ve been around since 1993. What’s our secret?

YOU! Since our fi rst conference (VBITS/VSLive!/

Visual Studio Live!) in 1993, tens of thousands of

developers, software architects, programmers,

engineers, designers and more have trusted us

year-in-and-year-out for unbiased and cutting-

edge education on the Microsoft Platform.

vslive.com/sandiego

vslive.com/sandiego

Untitled-5 3 5/31/18 4:26 PM

https://www.vslive.com/sandiego
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
https://www.linkedin.com

msdn magazine50 Test Run

second hidden layer. Then, the outputs of the second hidden layer
are sent to the output layer. The two hidden layers use ReLU
(rectified linear units) activation, which, for image classification,
often works better than standard tanh activation.

Notice that there’s no activation applied to the output nodes.
This is a quirk of CNTK because the CNTK training function
expects raw, un-activated values. The dnn object is just a conve-
nience alias. The model object has softmax activation so it can be
used after training to make predictions. Because Python assigns
by reference, training the dnn object also trains the model object.

Training the Neural Network
The neural network is prepared for training with:

tr_loss = C.cross_entropy_with_softmax(dnn, Y)
tr_eror = C.classification_error(dnn, Y)
max_iter = 10000
batch_size = 50
learn_rate = 0.01
learner = C.sgd(dnn.parameters, learn_rate)
trainer = C.Trainer(dnn, (tr_loss, tr_eror), [learner])

The training loss (tr_loss) object tells CNTK how to measure
error when training. The cross-entropy error is usually the best

choice for classification problems. The training classification
error (tr_eror) object can be used to automatically compute
the percentage of incorrect predictions during training or after
training. Specifying a loss function is required, but specifying a
classification error function is optional.

The values for the maximum number of training iterations, the
number of items in a batch to train at a time, and the learning rate
are all free parameters that must be determined by trial and error.
You can think of the learner object as an algorithm, and the trainer
object as the object that uses the learner to find good values for the
neural network’s weights and biases values. The stochastic gradient
descent (sgd) learner is the most primitive algorithm but works
well for simple problems. Alternatives include adaptive moment
estimation (adam) and root mean square propagation (rmsprop).

A reader object for the training data is created with these statements:
rdr = create_reader(train_file, input_dim, output_dim,
 rnd_order=True, m_swps=C.io.INFINITELY_REPEAT)
mnist_input_map = {
 X : rdr.streams.x_src,
 Y : rdr.streams.y_src
}

Figure 3 Complete Demo Program Listing

mnist_dnn.py
MNIST using a 2-hidden layer DNN (not a CNN)
Anaconda 4.1.1 (Python 3.5.2), CNTK 2.4

import numpy as np
import cntk as C

def create_reader(path, input_dim, output_dim, rnd_order, m_swps):
 x_strm = C.io.StreamDef(field='pixels', shape=input_dim,
 is_sparse=False)
 y_strm = C.io.StreamDef(field='digit', shape=output_dim,
 is_sparse=False)
 streams = C.io.StreamDefs(x_src=x_strm, y_src=y_strm)
 deserial = C.io.CTFDeserializer(path, streams)
 mb_src = C.io.MinibatchSource(deserial, randomize=rnd_order,
 max_sweeps=m_swps)
 return mb_src

===

def main():
 print("\nBegin MNIST classification using a DNN \n")

 train_file = ".\\Data\\mnist_train_1000_cntk.txt"
 test_file = ".\\Data\\mnist_test_100_cntk.txt"

 C.cntk_py.set_fixed_random_seed(1)
 input_dim = 784 # 28 x 28 pixels
 hidden_dim = 400
 output_dim = 10 # 0 to 9

 X = C.ops.input_variable(input_dim, dtype=np.float32)
 Y = C.ops.input_variable(output_dim) # float32 is default

 print("Creating a 784-(400-400)-10 ReLU classifier")
 with C.layers.default_options(init=\
 C.initializer.uniform(scale=0.01)):
 h_layer1 = C.layers.Dense(hidden_dim, activation=C.ops.relu,
 name='hidLayer1')(X/255)
 h_layer2 = C.layers.Dense(hidden_dim, activation=C.ops.relu,
 name='hidLayer2')(h_layer1)
 o_layer = C.layers.Dense(output_dim, activation=None,
 name='outLayer')(h_layer2)
 dnn = o_layer # train this
 model = C.ops.softmax(dnn) # use for prediction

 tr_loss = C.cross_entropy_with_softmax(dnn, Y)
 tr_eror = C.classification_error(dnn, Y)

 max_iter = 10000 # num batches, not epochs
 batch_size = 50
 learn_rate = 0.01
 learner = C.sgd(dnn.parameters, learn_rate)
 trainer = C.Trainer(dnn, (tr_loss, tr_eror), [learner])

 # 3. create reader for train data
 rdr = create_reader(train_file, input_dim, output_dim,
 rnd_order=True, m_swps=C.io.INFINITELY_REPEAT)
 mnist_input_map = {
 X : rdr.streams.x_src,
 Y : rdr.streams.y_src
 }

 # 4. train
 print("\nStarting training \n")
 for i in range(0, max_iter):
 curr_batch = rdr.next_minibatch(batch_size, \
 input_map=mnist_input_map)
 trainer.train_minibatch(curr_batch)
 if i % int(max_iter/10) == 0:
 mcee = trainer.previous_minibatch_loss_average
 macc = (1.0 - trainer.previous_minibatch_evaluation_average) \
 * 100
 print("batch %4d: mean loss = %0.4f, accuracy = %0.2f%% " \
 % (i, mcee, macc))
 print("\nTraining complete \n")

 # 5. evaluate model on test data
 rdr = create_reader(test_file, input_dim, output_dim,
 rnd_order=False, m_swps=1)
 mnist_input_map = {
 X : rdr.streams.x_src,
 Y : rdr.streams.y_src
 }

 num_test = 100
 test_mb = rdr.next_minibatch(num_test, input_map=mnist_input_map)
 test_acc = (1.0 - trainer.test_minibatch(test_mb)) * 100
 print("Model accuracy on the %d test items = %0.2f%%" \
 % (num_test,test_acc))

 print("\nEnd MNIST classification using a DNN \n")

if __name__ == "__main__":
 main()

0718msdn_McCaffreyTestRun_v3_46-52.indd 50 6/11/18 11:00 AM

Americas: +1 903 306 1676 EMEA: +44 141 628 8900 Oceania: +61 2 8006 6987
sales@asposeptyltd.com

Untitled-3 1 6/7/18 1:15 PM

mailto:sales@asposeptyltd.com
https://downloads.groupdocs.com

msdn magazine52 Test Run

If you examine the create_reader code in Figure 3, you’ll see
that it specifies the tag names (“pixels” and “digit”) used in the data
file. You can consider create_reader and the code to create a reader
object as boilerplate code for DNN image classification problems.
All you have to change is the tag names, and the name of the map-
ping dictionary (mnist_input_map).

After everything is prepared, training is performed, as shown
in Figure 4.

The demo program is designed so that each iteration processes
one batch of training items. Many neural network libraries use the
term “epoch” to refer to one pass through all training items. In this
example, because there are 1,000 training items, and the batch size
is set to 50, one epoch would be 20 iterations.

An alternative to training with a fixed number of iterations is to stop
training when loss/error drops below some threshold. It’s important to
display loss/error during training because training failure is the rule
rather than the exception. Cross-entropy error is difficult to interpret
directly, but you want to see values that tend to get smaller. Instead of
displaying average classification error (“25 percent wrong”), the demo
computes and prints the average classification accuracy (“75 percent
correct”), which is a more natural metric in my opinion.

Evaluating and Using the Model
After an image classifier has been trained, you’ll usually want to
evaluate the trained model on test data that has been held out.
The demo computes classification accuracy as shown in Figure 5.

A new data reader is created. Notice that unlike the reader used
for training, the new reader doesn’t traverse the data in random
order, and that the number of sweeps is set to 1. The mnist_
input_map dictionary object is recreated. A common mistake is
to try and use the original reader—but the rdr object has changed
so you need to recreate the mapping. The test_minibatch function
returns the average classification error for its mini-batch argument,
which in this case is the entire 100-item test set.

After training, or during training, you’ll usually want to save the
model. In CNTK, saving would look like:

mdl_name = ".\\Models\\mnist_dnn.model"
model.save(mdl_name)

This would save using the default CNTK v2 format. An alterna-
tive is to use the Open Neural Network Exchange (ONNX) format.
Notice that you’ll generally want to save the model object (with
softmax activation) rather than the dnn object (no output activa-
tion). From a different program, a saved model could be loaded
into memory along the lines of:

mdl_name = ".\\Models\\mnist_dnn.model"
model = C.ops.functions.Function.load(mdl_name)

After loading, the model can be used as if it had just been trained.
The demo program doesn’t use the trained model to make a pre-
diction. Prediction code could resemble this:

input_list = [0.55] * 784 # [0.55, 0.55, . . 0.55]
input_vec = np.array(input_list, dtype=np.float32)
pred_probs = model.eval(input_vec)
pred_digit = np.argmax(pred_probs)
print(pred_digit)

The input_list has a dummy input of 784 pixel values, each
with value 0.55 (recall the model was trained on normalized data
so you must feed in normalized data). The pixel values are copied
into a NumPy array. The call to the eval function would return an
array of 10 values that sum to 1.0 and can loosely be interpreted as
probabilities. The argmax function returns the index (0 through
9) of the largest value, which is conveniently the same as the
predicted digit. Neat!

Wrapping Up
Using a deep neural network used to be the most common approach
for simple image classification. However, DNNs have at least two
key limitations. First, DNNs don’t scale well to images that have
a huge number of pixels. Second, DNNs don’t explicitly take into
account the geometry of image pixels. For example, in an MNIST
image, a pixel that’s directly below a second pixel is 28 positions
away from first pixel in the input file.

Because of these limitations, and for other reasons, too, the use
of a convolutional neural network (CNN) is now more common
for image classification. That said, for simple image classifica-
tion tasks, using a DNN is easier and often just as (or even more)
effective than using a CNN.	 n

Dr. James McCaffrey works for Microsoft Research in Redmond, Wash. He has
worked on several Microsoft products, including Internet Explorer and Bing.
Dr. McCaffrey can be reached at jamccaff@microsoft.com.

Thanks to the following Microsoft technical experts who reviewed this article:
Chris Lee, Ricky Loynd, Ken Tran

print("\nStarting training \n")
for i in range(0, max_iter):
 curr_batch = rdr.next_minibatch(batch_size, \
 input_map=mnist_input_map)
 trainer.train_minibatch(curr_batch)
 if i % int(max_iter/10) == 0:
 mcee = trainer.previous_minibatch_loss_average
 macc = (1.0 - \
 trainer.previous_minibatch_evaluation_average) \
 * 100
 print("batch %4d: mean loss = %0.4f, accuracy = \
 %0.2f%% " % (i, mcee, macc))

Figure 4 Training

rdr = create_reader(test_file, input_dim, output_dim,
 rnd_order=False, m_swps=1)
mnist_input_map = {
 X : rdr.streams.x_src,
 Y : rdr.streams.y_src
}
num_test = 100
test_mb = rdr.next_minibatch(num_test,
 input_map=mnist_input_map)
test_acc = (1.0 - trainer.test_minibatch(test_mb)) * 100
print("Model accuracy on the %d test items = %0.2f%%" \
 % (num_test,test_acc)))

Figure 5 Computing Classification Accuracy

Many neural network libraries use
the term “epoch” to refer to one
pass through all training items.

0718msdn_McCaffreyTestRun_v3_46-52.indd 52 6/11/18 11:00 AM

mailto:jamccaff@microsoft.com

Untitled-1 1 1/5/18 1:11 PM

http://www.spreadsheetgear.com
mailto:sales@spreadsheetgear.com

Live! 360: A Unique Conference
for the IT and Developer Community

	 •	6	FULL	Days	of	Training	Including	Hands-On	Labs	&	Workshops

	•	6	Co-Located	Conferences	for	1	Low	Price

	•	Customize	Your	Own	Agenda	from	Hundreds	of	Sessions

	•	Expert	Education	and	Training

	•	Knowledge	Share	and	Networking

EVENT PARTNERS SILVER SPONSOR SUPPORTED BY

JOIN US AT

The Ultimate Education Destination

ROYAL PACIFIC RESORT AT UNIVERSAL ORLANDO

DECEMBER 2-7, 2018

magazine

CONNECT WITH LIVE! 360

twitter.com/live360	
@live360

facebook.com
Search	"Live	360"

linkedin.com
Join	the	"Live!	360"	group!

instagram.com
@live360_events

Untitled-7 2 4/26/18 4:34 PM

https://www.live360events.com
https://www.live360events.com
https://twitter.com/live360events
https://facebook.com/live360events
https://www.linkedin.com/
https://www.instagram.com/live360_events/

Visual Studio Live! features unbiased and

practical development training on the Microsoft

Platform. Come join us and code in paradise!

SQL Server Live! will leave you with the skills

needed to drive your data to succeed, whether

you are a DBA,developer, IT Pro, or Analyst.

TechMentor is where IT training meets

sunshine, with zero marketing speak on

topics you need training on now, and solid

coverage on what's around the corner.

Office & SharePoint Live! provides leading-edge

knowledge and training to work through

your most pressing projects and enable people

to work from anywhere at any time.

Modern Apps Live!, presented in partnership with

Magenic, focuses on how to architect, design and build

a complete Modern App from start to finish.

Artificial Intelligence Live! is an innovative,

new conference for current and aspiring

developers, data scientists, and data engineers

covering artificial intelligence (AI), machine

learning, data science, Big Data analytics,

IoT & streaming analytics, bots, and more.

PRODUCED BY

 6 C0-LOCATED
CONFERENCES,

 1 GREAT PRICE!

LIVE360EVENTS.COM

SUMMER SAVINGS =
BEST SAVINGS!

REGISTER BY 8/31
AND SAVE $500!
Use promo code: MSDN

See website for details.

REGISTER
NOW

NEW!
IN 2018

HANDS-ON LABS
Join	us	for	a	full-day		
of	pre-conference		
Hand-On	Labs	on		
Sunday,	December	2.

Untitled-7 3 4/26/18 4:34 PM

https://www.live360events.com

msdn magazine56

I’ve had some time to digest events at the Build 2018 conference.
Here’s what impressed me most, as Microsoft continues its transi-
tion into an artificial intelligence (AI) company.

The best demo, as usual, involved Scott Guthrie. To demonstrate the
Intelligent Edge of the Cloud, a speaker trained Microsoft’s AI photo
recognition service with images of ScottGu. He then downloaded and
ran that model on a Raspberry Pi. The tiny, cheap computer with its
built-in camera could now recognize the real ScottGu onstage, red
shirt and all. That drew cheers, some of them mine.

The best forward-looking idea came when a speaker demon-
strated voice commands, saying: “Hey, Cortana, set up a meeting
right now with the smart building team,” and the AI voice came
back, “Sure thing, you are all free now.” Then the speaker said, “Find
me a conference room with a Surface Hub,” and by golly, one just
happened to be open. The meeting was duly scheduled, and the
participants notified.

The attendees around me rolled their eyes—what are the odds
that the entire team and a room would be free on such short notice?
But I think Microsoft has stumbled onto something immensely
valuable. The company simply has to re-orient the application of
their AI to meetings.

We don’t need or want meetings made easier to schedule. We
already have way too many. (“Where the minutes are kept and
the hours are lost,” right?) We need fewer meetings, with fewer
attendees and a tighter focus. Imagine Microsoft Meeting Blaster™,
a new skill for Cortana.

Suppose whenever anyone tried to schedule a meeting, Cortana
would cross-examine him about the agenda: “Are you sure you
need a meeting on that topic? Tell me the goals you hope to accom-
plish. Did you see what so-and-so just published about this topic?
There, I’ve sent you the link. Read that first, then come back if you
still think you need a meeting.” The scheduler would have to do
his homework before Cortana would let him distract busy people.

Another huge problem: Because the size of a meeting indicates
a leader’s importance, managers invite way too many people for

them all to be productive. Invariably you have two or three guys
talking and nine guys checking their phones and rolling their eyes,
praying for Scotty to beam them out of there. Suppose Microsoft’s
AI could monitor a meeting via cameras and microphones, pro-
ducing hard data on that meeting’s value for each attendee. Maybe
that ammunition could help Cortana resist the encroachment of
meetings on their productive time.

Cortana could insist that the scheduler justify each attendee:
“You’re inviting Bob? The last time Bob came to a meeting on this
topic, he spent 30 seconds talking, 150 seconds actually listening,
and the remaining 97 minutes yawning and playing Solitaire. And
I see they’re serving his favorite three-bean chili for lunch that day,
and the windows in the room I reserved don’t open. I’d skip him if
I were you.” Or, better yet: “The last time Alice got dragooned into
a meeting on this topic, approximately 45.3 seconds contained
content that was valuable to her. Convince me this meeting will
be different before I let you bother her.”

Once a meeting starts, the biggest problem is keeping partic-
ipants on topic. Think of all the self-indulgent storytelling and
tangential screeds you’ve had to sit through while your deadlines
ticked away. Suppose Cortana could listen in and drop the ham-
mer on meeting hogs: “[Referee’s whistle] Hey, Charlie. Back on
topic, please.” “But Cortana, I was just …” “Right now, please. Don’t
make me bust you back to Level Zero on Candy Crush.” Because
Cortana doesn’t depend on the leader’s evaluation to keep her job,
she could slap down even senior miscreants.

How could you train such an AI model? Easy: Unleash Microsoft’s
AI to do what it claims it can do—recognize facial expressions and
body language. Smiles, nodding, thumbs-up gestures (automati-
cally adjusted for differing cultures, of course)—all good. Eye rolls,
yawns, silently mouthing “[Expletive] this [expletive]” (in whatever
language), taps and drags on phone screens indicating Solitaire,
outright snoring—not so good. Now that’s using AI to benefit
society. That would make Microsoft a boatload of money and
guarantee a standing ovation at Build 2019. I’m looking forward
to seeing ScottGu demonstrate it. 	 n

David S. Platt teaches programming .NET at Harvard University Extension
School and at companies all over the world. He’s the author of 11 programming
books, including “Why Software Sucks” (Addison-Wesley Professional, 2006)
and “Introducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named
him a Software Legend in 2002. He wonders whether he should tape down two
of his daughter’s fingers so she learns how to count in octal. You can contact him
at rollthunder.com.

Building Better Meetings

Don’t Get Me Started DAVID S. PLATT

We don’t need or want meetings
made easier to schedule. We
already have way too many.

0718msdn_PlattDGMS_v1_56.indd 56 6/11/18 11:36 AM

http://rollthunder.com

Learn, Explore, Use
Your Destination for Data Cleansing & Enrichment APIs

Global IP Locator

Property Data

Global Email

Business Coder
Global Name

Global Phone

Global Address

D E V E L O P E R

ID Veri�cation

Convenient access to Melissa
APIs to solve problems with
ease and scalability.

Ideal for web forms and call
center applications, plus batch
processing for database cleanup.

Turn Data into Success – Start Developing Today!

Melissa.com/developer

Your centralized portal to discover our tools, code snippets and examples.

FLEXIBLE
CLOUD APIS

Easy payment options to free
funds for core business
operations.

Supports REST, JSON, XML
and SOAP for easy integration
into your application.

RAPID APPLICATION
DEVELOPMENT

REAL-TIME &
BATCH PROCESSING

TRY OR
BUY

1-800-MELISSA

Untitled-1 1 2/2/18 10:47 AM

http://www.melissa.com/developer

Untitled-5 1 4/5/18 1:54 PM

http://www.jetbrains.com/rider

	Back
	Print
	MSDN Magazine, July 2018
	Cover Tip
	Front
	Back

	Contents
	FEATURES
	Machine Learning with IoT Devices on the Edge
	Improving LUIS Intent Classifications
	Decentralized Applications with Azure Blockchain as a Service

	COLUMNS
	DATA POINTS: EF Core 2.1 Query Types
	THE WORKING PROGRAMMER: How To Be MEAN: Dynamically Angular
	CUTTING EDGE: Online Users, Streaming and Other SignalR Goodies
	TEST RUN: Introduction to DNN Image Classification Using CNTK
	DON’T GET ME STARTED: Building Better Meetings

	Visual Studio Live!, Chicago - Insert
	Visual Studio Live!, San Diego - Insert

