
magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS JANUARY 2018 VOL 33 NO 1

Working with Span
in C# 7.2.................................22

 0118msdn_CoverTip_8x10.75.indd 1 0118msdn_CoverTip_8x10.75.indd 1 12/12/17 12:43 PM12/12/17 12:43 PM

http://www.devexpress.com/try

 1317msdn_CoverTip_8x10.75.indd 2 1317msdn_CoverTip_8x10.75.indd 2 11/28/17 2:59 PM11/28/17 2:59 PM

http://www.devexpress.com/try

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS JANUARY 2018 VOL 33 NO 1

All About Span: Exploring a
New .NET Mainstay
Stephen Toub.. 22

Extend Excel Formulas for Data Analysis
Michael Saunders.. 30

Build the API to Your Organization with
Microsoft Graph and Azure Functions
Mike Ammerlaan.. 34

What’s New for .NET UWP Development?
Daniel Jacobson and Stefan Wick.. 46

Creating a Line-of-Business App
with the UWP
Bruno Sonnino.. 56

COLUMNS
UPSTART
Crisis of Confidence
Krishnan Rangachari, page 6

DATA POINTS
Creating Azure Functions to
Interact with Cosmos DB
Julie Lerman, page 8

ARTIFICIALLY INTELLIGENT
Creating Models in Azure
ML Workbench
Frank La Vigne, page 16

CUTTING EDGE
20 Years of Cutting Edge:
A Conversation
Dino Esposito, page 64

DON’T GET ME STARTED
WD-40
David Platt, page 72

Working with Span
in C# 7.2.................................22

0118msdn_C1_v1.indd 1 12/12/17 8:51 AM

Infragistics Ultimate 17.2
Productivity Tools & Fast Performing UI Controls for Quickly
Building Web, Desktop, & Mobile Apps

Featuring

Create beautiful, touch-fi rst, responsive desktop & mobile wep apps with over 100
JavaScript / HTML5, MVC & Angular components.

Our easy to use Angular components have no 3rd party dependencies, a tiny footprint,
and easy-to-use API.

The Ignite UI Angular Data Grid enables you to quickly bind data with little coding -
including features like sorting, fi ltering, paging, movable columns, templates and more!

Speed up development time with responsive layout, powerful data binding, cross-browser
compatibility, WYSIWYG page design, & built-in-themes.

Ignite UI
A complete UI component library for building high-performance, data rich
web applications

Download a free trial of Ignite UI at: Infragistics.com/Ignite-ui
To speak with our sales team or request a product demo call: 1.800.321.8588

Includes 100+ beautifully styled, high-performance grids, charts & other UI controls, plus
visual confi guration tooling, rapid prototyping, and usability testing.

Angular | JavaScript / HTML5 | ASP.NET | Windows Forms | WPF | Xamarin

Download a free trial at
 Infragistics.com/Ultimate

Untitled-5 2 11/6/17 1:06 PM

http://www.Infragistics.com/Ultimate

Infragistics Ultimate 17.2
Productivity Tools & Fast Performing UI Controls for Quickly
Building Web, Desktop, & Mobile Apps

Featuring

Create beautiful, touch-fi rst, responsive desktop & mobile wep apps with over 100
JavaScript / HTML5, MVC & Angular components.

Our easy to use Angular components have no 3rd party dependencies, a tiny footprint,
and easy-to-use API.

The Ignite UI Angular Data Grid enables you to quickly bind data with little coding -
including features like sorting, fi ltering, paging, movable columns, templates and more!

Speed up development time with responsive layout, powerful data binding, cross-browser
compatibility, WYSIWYG page design, & built-in-themes.

Ignite UI
A complete UI component library for building high-performance, data rich
web applications

Download a free trial of Ignite UI at: Infragistics.com/Ignite-ui
To speak with our sales team or request a product demo call: 1.800.321.8588

Includes 100+ beautifully styled, high-performance grids, charts & other UI controls, plus
visual confi guration tooling, rapid prototyping, and usability testing.

Angular | JavaScript / HTML5 | ASP.NET | Windows Forms | WPF | Xamarin

Download a free trial at
 Infragistics.com/Ultimate

Untitled-5 3 11/6/17 1:06 PM

http://www.Infragistics.com/Ultimate

msdn magazine2

ID STATEMENT MSDN Magazine (ISSN 1528-4859) is
published 13 times a year, monthly with a special issue in
November by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid
at Chatsworth, CA 91311-9998, and at additional mailing
offices. Annual subscription rates payable in US funds
are: U.S. $35.00, International $60.00. Annual digital
subscription rates payable in U.S. funds are: U.S. $25.00,
International $25.00. Single copies/back issues: U.S. $10,
all others $12. Send orders with payment to: MSDN
Magazine, P.O. Box 3167, Carol Stream, IL 60132, email
MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN
Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return
Undeliverable Canadian Addresses to Circulation Dept.
or XPO Returns: P.O. Box 201, Richmond Hill,
ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part
prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 4 Venture,
Suite 150, Irvine, CA 92618.

LEGAL DISCLAIMER The information in this magazine
has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed
or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While
the information has been reviewed for accuracy, there
is no guarantee that the same or similar results may be
achieved in all environments. Technical inaccuracies may
result from printing errors and/or new developments
in the industry.

CORPORATE ADDRESS 1105 Media, 9201 Oakdale Ave.
Ste 101, Chatsworth, CA 91311 1105media.com

MEDIA KITS Direct your Media Kit requests to Chief
Revenue Officer Dan LaBianca, 972-687-6702 (phone),
972-687-6799 (fax), dlabianca@1105media.com

REPRINTS For single article reprints (in minimum
quantities of 250-500), e-prints, plaques and posters
contact: PARS International
Phone: 212-221-9595
E-mail: 1105reprints@parsintl.com
Web: 1105Reprints.com

LIST RENTAL This publication’s subscriber list, as well as
other lists from 1105 Media, Inc., is available for rental.
For more information, please contact our list manager,
Jane Long, Merit Direct. Phone: 913-685-1301;
E-mail: jlong@meritdirect.com;
Web: meritdirect.com/1105

Reaching the Staff
Staff may be reached via e-mail, telephone, fax, or mail.
E-mail: To e-mail any member of the staff, please use the
following form: FirstinitialLastname@1105media.com
Irvine Office (weekdays, 9:00 a.m. – 5:00 p.m. PT)
Telephone 949-265-1520; Fax 949-265-1528
4 Venture, Suite 150, Irvine, CA 92618
Corporate Office (weekdays, 8:30 a.m. – 5:30 p.m. PT)
Telephone 818-814-5200; Fax 818-734-1522
9201 Oakdale Avenue, Suite 101, Chatsworth, CA 91311
The opinions expressed within the articles and other
contentsherein do not necessarily express those of
the publisher.

President
Henry Allain

Chief Revenue Officer
Dan LaBianca

ART STAFF

Creative Director Jeffrey Langkau
Associate Creative Director Scott Rovin
Art Director Michele Singh
Art Director Chris Main
Senior Graphic Designer Alan Tao
Senior Web Designer Martin Peace

PRODUCTION STAFF

Print Production Manager Peter B. Weller
Print Production Coordinator Lee Alexander

ADVERTISING AND SALES

Chief Revenue Officer Dan LaBianca
Regional Sales Manager Christopher Kourtoglou
Advertising Sales Associate Tanya Egenolf

ONLINE/DIGITAL MEDIA

Vice President, Digital Strategy Becky Nagel
Senior Site Producer, News Kurt Mackie
Senior Site Producer Gladys Rama
Site Producer, News David Ramel
Director, Site Administration Shane Lee
Front-End Developer Anya Smolinski
Junior Front-End Developer Casey Rysavy
Office Manager & Site Assoc. James Bowling

LEAD SERVICES

Vice President, Lead Services Michele Imgrund
Senior Director, Audience Development
& Data Procurement Annette Levee
Director, Audience Development
& Lead Generation Marketing Irene Fincher
Director, Client Services & Webinar
Production Tracy Cook
Director, Lead Generation Marketing Eric Yoshizuru
Director, Custom Assets & Client Services Mallory Bastionell
Senior Program Manager, Client Services
& Webinar Production Chris Flack
Project Manager, Lead Generation Marketing
Mahal Ramos

ENTERPRISE COMPUTING GROUP EVENTS

Vice President, Events Brent Sutton
Senior Director, Operations Sara Ross
Senior Director, Event Marketing Merikay Marzoni
Events Sponsorship Sales Danna Vedder
Senior Manager, Events Danielle Potts
Coordinator, Event Marketing Michelle Cheng
Coordinator, Event Marketing Chantelle Wallace

Chief Executive Officer
Rajeev Kapur

Chief Operating Officer
Henry Allain

Chief Financial Officer
Craig Rucker

Chief Technology Officer
Erik A. Lindgren

Executive Vice President
Michael J. Valenti

Chairman of the Board
Jeffrey S. Klein

General Manager Jeff Sandquist
Director Dan Fernandez
Editorial Director Jennifer Mashkowski mmeditor@microsoft.com
Site Manager Kent Sharkey
Editorial Director, Enterprise Computing Group Scott Bekker
Editor in Chief Michael Desmond
Features Editor Sharon Terdeman
Group Managing Editor Wendy Hernandez
Senior Contributing Editor Dr. James McCaffrey
Contributing Editors Dino Esposito, Frank La Vigne, Julie Lerman, Mark Michaelis,
Ted Neward, David S. Platt
Vice President, Art and Brand Design Scott Shultz
Art Director Joshua Gould

JANUARY 2018 VOLUME 33 NUMBER 1

magazine

0118msdn_Masthead_v3_2.indd 2 12/12/17 8:56 AM

mailto:mmeditor@microsoft.com
mailto:MSDNmag@1105service.com
mailto:dlabianca@1105media.com
mailto:1105reprints@parsintl.com
mailto:jlong@meritdirect.com
http://1105Reprints.com
http://meritdirect.com/1105

Untitled-9 1 12/8/17 2:35 PM

http://www.leadtools.com

msdn magazine4

MICHAEL DESMONDEditor’s Note

It’s been a challenge since forever: How do you unlock the data cre-
ated in and captured by productivity applications such as Word,
Excel, Outlook, SharePoint and OneNote? And just as important,
how do you link up and imbue that data with context, so it can be
intelligently interpreted, leveraged and consumed?

It’s a question that Microsoft has spent years working to answer,
in the form of Microsoft Graph. Graph is a family of rich, consistent
REST APIs that provides vital connective tissue between applications,
Azure cloud infrastructure, and IT resources and data stores. In our
Connect(); special issue last year, Microsoft Principal Program Man-
ager Yina Arenas explored the Graph APIs in her article, “Microsoft
Graph: Gateway to Data and Intelligence” (msdn.com/magazine/mt790189).
There, she described Graph as “the unified gateway for developers to
access all the data, intelligence and APIs housed in Microsoft’s intelli-
gent cloud, including Exchange, SharePoint, Azure Active Directory,
OneDrive, Outlook, OneNote, Planner, Excel and more.”

She went on to describe how the intelligent Graph engine uses
machine learning to provide calculated insights and rich relationships.
But the most important thing is that this capability is accessed via a
single REST API endpoint, vastly simplifying developer interaction
across all of Microsoft’s APIs by bringing them together, as Arenas
wrote, “in a single URI namespace with a single authentication story.”

A year later, Microsoft continues to refine, improve and extend
its Graph APIs. In this issue of MSDN Magazine, Mike Ammerlaan
writes “Build the API to Your Organization with Microsoft Graph
and Azure Functions,” in which he describes how the new Azure
Functions Binding Extensions can be used to automate common
tasks and processes. In the article, Ammerlaan walks through
using Binding Extensions to pull together disparate sets of data in
one piece of code using a single authentication token. He shows
how the extensions can be used to access and prepare files stored
in Microsoft OneDrive, and then perform voice recognition via
Microsoft Cognitive Services.

As director of product marketing on the Microsoft Office
Ecosystem team, Ammerlaan says the Graph APIs are the result

of a years-long effort that demanded a strategic rethink across
teams at Microsoft.

“Building Microsoft Graph required coordinating API designs
and consistency across a dozen teams (and growing) at Microsoft,
allowing for quick evolution while building a more universal and
consistent API.”

For organizations looking to migrate to Graph, Ammerlaan
suggests a measured approach. He notes that many existing
product-specific APIs like SharePoint REST continue to be actively
updated. So while Graph APIs are conceptually similar to exist-
ing product APIs, the decision to shift to Graph depends on a
lot of factors.

“For new projects, I think developers should strongly consider
evaluating Microsoft Graph and seeing what facets of it may apply
to new projects,” says Ammerlaan. “The breadth of tools, SDKs,
and documentation make Microsoft Graph the best way to access
Microsoft data and insights. I’m convinced every enterprise applica-
tion could benefit from Microsoft Graph to be at its most effective.”

Over time, Ammerlaan says, the benefits of adopting Microsoft
Graph compound with investments into the APIs. As he writes in
the article: “The more APIs you can bring together and connect,
the more useful by far the net set of products you build could
be—greater than the sum of
its parts.”

Going to Graph

© 2018 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodified form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affiliated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specific environments and configurations. These recommendations or guidelines may not apply to dissimilar configurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

Ammerlaan says the Graph APIs
are the result of a years-long

effort that demanded a strategic
rethink across teams at Microsoft.

0118msdn_DesmondEdNote_v3_4.indd 4 12/12/17 8:52 AM

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine
http://msdn.com/magazine/mt790189

Untitled-4 1 11/27/17 3:38 PM

http://www.devexpress.com/spreadsheet

msdn magazine6

I’m often asked by engineers how they can overcome their “lack of
confidence” in taking their next big professional leap. In this col-
umn, I’ll answer this in two parts: First, by examining confidence
itself, and second, by discussing what to do if, after you take the
leap, things start to fall apart.

Part I. The Reframe
Feeling lack of confidence is very common, and it can stunt pro-
fessional growth. Here’s how you can overcome it.

Doubt it. Sometimes, when engineers say “lack of confidence,”
what they really mean is that they feel stuck. They have believed
certain thoughts, acted certain ways, and associated with certain
people for so long that their identity has become the sum of their
opinions, actions, and friendships.

To break out of the pattern, think opposite thoughts, act in
opposite ways and associate with people you wouldn’t normally
associate with. The unfamiliarity can jolt the system so much that
you temporarily shed your conditioning, and in that space, a new
self-identity can emerge.

Catch it. The fastest way to grow confidence is to be around
positive, optimistic, self-assured people. You may be running low
on confidence because of coworkers, friends, TV personalities, or
online acquaintances who are self-flagellating or unkind to them-
selves, because that’s their conditioning.

Until you build up your own emotional reserves, such inter-
actions can drain you. Fortunately, the cure is simple: you seek
out the company of those with a higher self-image. If you don’t
know any, read the books and watch the videos of those who do.
Carefully self-monitor your exposure to draining people; it’s not
your job to fix or teach them, directly or indirectly.

Play it. You can ask yourself, “If I were supremely confident in
this moment, what tiny step would I take right now?” Then, go do
it! When you do this in small ways here and there, you begin to
realize something: Confidence is the natural outcome of hundreds
of small acts of courage.

Part II. The Post-Confidence Funk
Once you take the leap, you may make sudden, dramatic strides in
your productivity and your outlook toward people. You may taste
success that had seemed a struggle, but now seems easy.

Yet, not long after, you may find yourself in a funk—it’s as if the
growth you experienced never even happened. In fact, your origi-
nal problems may suddenly get a lot worse. Was that growth spurt

a fluke? Why is it all falling apart now, just when you were finally
getting your bearings?

As an example, an engineer who’s wasting all his time at work on
the Internet may finally admit that he has a problem, and seek help
from a friend. That’s excellent growth! Yet, he may notice that he now
starts binging on the Internet like he’s never binged before. His old
problem is back, bigger than ever. The engineer then connects his lat-
est binge to the act of him seeking help. He panics, and stops seeking
help! He reasons that at least his old problem wasn’t this bad before.

You may see this in your own careers. You’ve just uncovered a
big insight, and taken a positive next step. But right at this crucial
moment, you may feel suddenly overwhelmed, even out-of-control.
So, you stop, and go back to the old ways.

Behind the Scenes
This process is more common among those who are sensitive and
introverted, so it’s something software engineers often encounter.
Basically, anytime you take on a new identity or set of behaviors, you
set up an internal battle between who you’re trying to be—Version 2
(V2)—and who you no longer want to be—Version 1 (V1).

The process of unlearning your V1 habits creates a struggle with
older parts of yourself that are used to seeing only V1. These older
parts don’t yet understand what’s happening. They may even feel
that they’re being attacked. These older parts have your best inter-
ests at heart, but they lack perspective. So, they try to bring back
the only friend they’ve ever known—V1—by any means necessary.

They’ll bring back older desires and compulsions with greater
force, with greater urgency, because those were hallmarks of V1.
They don’t yet know that V2 is just a healthier upgrade to V1. They
haven’t gotten to know V2 yet.

An Answer
The solution is deceptively simple. No matter how many times you
fall down in your quest to become V2, you just get back up, and
keep trying again. Every time you do this, a little more of you—your
will, your desires, your personality, different parts of you—shifts
loyalties from V1 to V2.

Over a period of years, you may reach a point where a little more
of you lives in V2 than in V1. And when that happens, you’re no
longer running away from V1; you’re striding toward V2. 	 n

Krishnan Rangachari helps engineering managers have more impact. Visit
RadicalShifts.com for his newsletter and coaching.

Crisis of Confidence

Upstart KRISHNAN RANGACHARI

0118msdn_RangaUpstart_v3_6.indd 6 12/12/17 9:01 AM

http://RadicalShifts.com

Amyuni DOCX Converter
for Windows

www.docxconverter.com

Convert any document, including PDF documents, into DOCX format.
Enable editing of documents using Microsoft Word or other Office products.

Powered by Amyuni Technologies:
Developers of the Amyuni PDF Converter and Amyuni PDF Creator products integrated into

hundreds of applications and installed on millions of desktops and servers worldwide.

Free Demo at DOCXConverter.com

Create naturally editable DOCX
documents with paragraph
formatting and reflow of text

Extract headers and footers from
source document and save them
as DOCX headers and footers

Open PDF documents with the
integrated PDF viewer and quickly
resave them to DOCX format

Configure the way the fonts are
embedded into the DOCX file
for optimal formatting

Convert images and graphics
of multiple formats into
DOCX shapes

Use OCR technology to convert
non-editable text into real text

Create

Extract

Convert

Open

OCR

Configure

A standalone desktop version, a server product
for automated processing or an SDK for
integration into third party applications.

A virtual printer driver available for Windows 7 to Windows 10
and Windows Server 2008 to 2016

All trademarks are property of their respective owners. © Amyuni Technologies Inc. All rights reserved.

MSDN Ad DOCX Converter 02.indd 1 04/11/2017 15:22
Untitled-1 1 11/6/17 12:24 PM

http://www.docxconverter.com

msdn magazine8

In my last column, I walked you through building a simple Universal
Windows Platform (UWP) app—a game called CookieBinge—that
was basically an excuse for me to explore using Entity Framework
Core 2.0 (EF Core) in a device-bound Windows 10 app. The addi-
tion of providers for portable databases such as SQLite complete
the picture to make this a possibility.

The app, in its current state, stores game scores locally on the
device where the game is being played by using EF Core 2.0 to per-
sist the data to a SQLite database. In that last article, I promised the
next iteration of this game would allow users to share that data with
other game players on the Internet. To achieve that goal, I’ll be using
two cool features of Azure: Azure Cosmos DB and Azure Functions.

A Bit About Azure Cosmos DB
Azure Cosmos DB is the next generation of what began life as Azure
Document DB—a technology I’ve written about numerous times
in this column. “An Overview of Microsoft Azure DocumentDB”
(msdn.com/magazine/mt147238) in June 2015 was followed by two more
articles where I used it as the back end of an Aurelia Web app by
way of a Node.js server API.

DocumentDB evolved to become a globally distributed database
with some extraordinary features. Besides the ease with which
it can be distributed globally, its consistency models have been
realigned so that there’s more to choose from than just strong and
eventual. Between those two extremes, users can now also choose
bounded-staleness, session or consistent prefix. There are many
more important features to support the data store, and the docu-
ment database is now joined by a number of other data models—
documents accessible via MongoDB APIs, graph databases, table
(key/value pair) and column data storage. All of these models
are under the Cosmos DB umbrella. In fact, if you had an Azure
DocumentDB, it was automatically switched to an Azure Cosmos
DB, allowing your existing document database to benefit from all
of the new features Cosmos DB brings. You can read much more
about Cosmos DB by starting at cosmosdb.com.

And a Bit About Azure Functions
I’m going to use Cosmos DB to store the CookieBinge scores. How-
ever, rather than write all of the code myself using the Document
DB APIs, I’ll take advantage of another relatively new feature of
Azure: Azure Functions. Azure Functions is the Microsoft “serverless

computing” offering. I’ve always been a skeptic about that phrase
because the computing is still on a server ... just not my server. But
having finally had a chance to work with Azure Functions, I now
have a great respect for the concept. Azure Functions lets you focus
on the actual logic you want to perform in the app, while it takes
care of the cross-cutting concerns such as deployment, supporting
APIs, and connections to other functionality such as data storage
or sending e-mails. I didn’t totally understand this until I did it
myself, so my hope is that by following my path as I prepare this
feature for the CookieBinge app, you’ll also have your aha moment.

Preparation for Building the First Azure Function
There are three ways to build Azure Functions. One is with tooling
in Visual Studio 2017. Another is directly in the Azure portal. You
can also use Visual Studio Code in combination with the Azure
command-line interface (CLI). I decided to start my learning by
way of the portal because it walked me through all of the steps
I needed. Another benefit is that without the help of the Visual
Studio 2017 tooling, I was forced to think a little harder about all
of the moving parts. I feel I got a much better understanding that
way. Of course, there are lots of fabulous resources for doing this
in Visual Studio 2017, as well, but the other thing I like about using
the portal is that it’s Web-based and, therefore, a cross-platform
option. Keep in mind, while you can deploy your function code
and assets from source control into Azure, anything you build
directly in the portal will have to be downloaded to your machine
(a simple task) and from there, pushed to your repository.

Creating Azure Functions to Interact with
Cosmos DB

Data points JULIE LERMAN

Code download available at msdn.com/magazine/0118magcode. Figure 1 A Bit of the Template List for Creating New, Custom
Azure Functions

0118msdn_LermanDPts_v5_8-14.indd 8 12/12/17 8:55 AM

http://msdn.com/magazine/0118magcode
http://cosmosdb.com
http://msdn.com/magazine/mt147238

9January 2018msdnmagazine.com

If you want to follow along and don’t already have an Azure
subscription, I’m happy to inform you that you can get a free sub-
scription, and it’s not just for a short trial. Some Azure products
will be free for a year and there are a few dozen that will always be
free. Go to azure.com/free to get set up. I’m using the account I get as
part of my Visual Studio subscription, which has a monthly credit
allowance for experimenting with Azure.

Before creating the functions, I need to define my goals. I want
my app to be able to:

• �Store user scores on the Web, persisting not only some user
information and the date along with the score, but also the
type of device the game was played on.

• �Allow users to retrieve their highest scores across all of the
devices on which they’re playing.

• �Allow a user to retrieve the highest scores across all users.
I’m not going to bog this lesson down with matters like creating

and authenticating accounts, though of course you’d need that for
the real world. My aim is to show you Azure Functions and, even-
tually, the interaction from the UWP app.

Creating the Azure Function in the Azure Portal
Azure Functions is a service that’s
grouped in a function app that
allows you to define and share
settings across its set of functions.
So, I’ll start by creating a new func-
tion app. In the Azure portal, click
New and filter on “function app”
to easily find that option. Click
Function App in the results list
and then Create, which prompts

you to fill out some metadata, such as
a name for your app. I named mine
cookiebinge.azurewebsites.net. As this
is just a simple demo, I’ll accept the rest
of the defaults on the Create page. For
easy future access to your new func-
tion app, check the Pin to Dashboard
option and then the Create button. It
took only about 30 seconds for my
new function app’s deployment to
be completed.

Now you can add some functions
into the function app. My functions will
be built to support the list of goals men-
tioned earlier. The Azure Functions
service has a pre-defined (and quite
rich) set of events it can respond to,
including an HTTP request, a change
in a Cosmos DB database, or an event
in a blob or a queue. Because I want to
call into these functions from the UWP
app, I want functions that respond to
requests coming over HTTP. The portal
provides a slew of templates in a vari-

ety of languages: Bash, Batch, C#, F#, JavaScript, PHP, PowerShell,
Python and TypeScript. I’ll use C#.

To create the first function inside the function app, click on the
plus sign next to the Functions header. You’ll see buttons to create
pre-defined functions, but if you scroll down below those buttons,
you’ll find a link to create a custom function. Choose that option
and you’ll see a scrollable grid filled with template options, as shown
in Figure 1. HTTP Trigger – C# should be at the top of that list
and that’s what you should select.

Name the function and then click the Create button. I named
mine StoreScores.

The portal will create a function with some default code so you
can see how it’s structured. The function is built into a file called
run.csx (see Figure 2). You can have additional logic in supporting
files, as well, but that’s more advanced than needed for this first look.

The only method in the example is called Run, which is what
Azure will call in response to an HTTP request to this func-
tion. It has one parameter to capture the request and another for
relaying information to a log.

In the sample, you can see that the function is looking for
incoming data that represents a name, and the function is flexible

Figure 2 Default Function Logic for a New HTTPTrigger

Figure 3 Defining the Functions Integration Points

0118msdn_LermanDPts_v5_8-14.indd 9 12/12/17 8:55 AM

http://msdnmagazine.com
http://azure.com/free

msdn magazine10 Data Points

enough to search for it in the query parameters and in the request
body. If the name isn’t found, the function will return an Http
ResponseMessage with a friendly error message, otherwise it
returns “Hello [name]” in the response.

Customizing the Function
to Interact with Cosmos DB
The goal of the function is to store the incoming data into a
Cosmos DB database. Here’s where the magic begins. There’s no
need to create connections and commands and other code to do
this task. Azure Functions has the ability to integrate easily with a
number of other Azure products—and Cosmos DB is one of them.

In the Functions list, you should see your new function and
three items below it. One of those items is Integrate. Select that and
you’ll see the form partially shown in Figure 3. Notice that it says
the trigger is an HTTP request and that the output returns some-
thing through HTTP. Because I want to return a success or failure
message, I do want to keep that HTTP output. But I also want to
add an output that has a Cosmos DB collection as its destination.

To do this, click on New Output, which will display a list of icons.
Scroll down to the one called Azure Cosmos DB, select it and then
further down on the page you’ll see a SELECT button. You know
what to do. (Click that button!)

The screen to set up this integration gets pre-populated
with defaults. The Document Parameter Name represents the
parameter you’ll use in run.csx. I’ll leave that as the default name,
outputDocument. Next are the names of the Cosmos DB database

and the collection within that
database, as well as the connection
to the Cosmos DB account where
the database lives. You’ll also see
a checkbox to automatically cre-
ate the database for you. I already
have a few Cosmos DB accounts
created, so I’m going to use one of
those, but I let my function create a
new database named CookieBinge
with a collection called Binges in
that account. Figure 4 shows how
I’ve filled out this form before sav-
ing the output definition. Because I
marked the checkbox to create the
database and collection, those will
be created for me, but not when I

save this output. When the function first attempts to store data into
the database and sees that it doesn’t exist, the function will create
the database on the fly.

Customizing Run.csx
Now it’s time to redefine the function code. The new version of the func-
tion expects a JSON object passed in that aligns with this BingeReq-
uest class, which I added into the run.csx file below the Run method:

 public class BingeRequest{
 public string userId {get;set;}
 public string userName {get;set;}
 public string deviceName {get;set;}
 public DateTime dateTime {get;set;}
 public int score{get;set;}
 public bool worthit {get;set;}
}

But this is not the same structure as the data I want to store
because I want to capture one more property—the date and time
the data is logged into the database. I’ll do that using a second
class, BingeDocument, which inherits from BingeRequest, thereby
inheriting all of its properties, as well as adding one more property
named logged. The constructor takes a populated BingeRequest
and after setting the value of logged, it transfers the BingeRequest
values to its own properties:

using System.Net;
public static async Task<HttpResponseMessage> Run(HttpRequestMessage req,
 TraceWriter log, IAsyncCollector<object> outputDocument)
{
 BingeRequest bingeData = await req.Content.ReadAsAsync<BingeRequest>();
 log.Verbose("Incoming userId:" + bingeData.userId);
 var doc=new BingeDocument(bingeData,log);
 log.Verbose("Outgoing userId:" + doc.userId);
 await outputDocument.AddAsync(doc);
 if (doc.userId !=" "){
 return req.CreateResponse(HttpStatusCode.OK,$"{doc.userId} was created");
 }
 else {
 return req.CreateResponse(HttpStatusCode.BadRequest,
 $"The request was incorrectly formatted.");
 }
}
public class BingeRequest{ . . . }
public class BingeDocument { . . . }

Figure 5 The New run.csx File Capturing the Binge and
Storing It into the Output, Cosmos DB

Figure 4 Defining a Cosmos DB as Output for the Function

Azure Functions has the ability to
integrate easily with other Azure
products—and Cosmos DB is

one of them.

0118msdn_LermanDPts_v5_8-14.indd 10 12/12/17 8:55 AM

Untitled-6 1 3/6/17 2:32 PM

http://www.nsoftware.com

msdn magazine12 Data Points

public class BingeDocument:BingeRequest
 {
 public BingeDocument(BingeRequest binge){
 logged=System.DateTime.Now;
 userId=binge.userId;
 userName=binge.userName;
 deviceName=binge.deviceName;
 dateTime=binge.dateTime;
 score=binge.score;
 }
 public DateTime logged{get;set;}
 }

With these types in place, the Run method can take advantage
of them. Figure 5 shows the modified listing for run.csx, including
placeholders for the BingeRequest and BingeDocument classes
described earlier.

Let’s parse the new Run method. Its signature takes a request
and a TraceWriter just as the original signature did, but now it also
has an asynchronous output parameter named outputDocument.
The result of the output parameter is what will get pushed to the
Cosmos DB output I defined. Notice that its name aligns with the
output parameter name in the output configuration in Figure 4.
The TraceWriter lets me output messages to the log window that’s
below the code window. I’ll take these out eventually, but it’s like
the old days, without the IDEs that let you debug. Don’t get me
wrong, though. The code window is amazing at parsing the lan-
guage you’re working in, and when you save, any compiler errors,
which are very detailed, also get output to the debug window.
It also does things like inserting a closing brace when you type

in an opening brace. There are an
impressive number of editor
features, in fact. For example, right-
click on the editor window to see
the long list of editor features of
which you can take advantage.

The first line of code in Run
asynchronously reads the request

and converts its result into a BingeRequest object.
Next, I instantiate a new BingeDocument, passing in the object

I just created from the request, which results in a fully populated
BingeDocument object, along with the logged property populated.

I then use the TraceWriter to show some data from the request
in the logs so, when debugging, I can tell if BingeDocument did
indeed get the data from the request object.

Finally, I asynchronously add the BingeDocument I just created
into the asynchronous outputDocument.

The result of that outputDocument object is what gets sent to Cosmos
DB by the function. It gets stored into the DocumentDB as JSON—

the function converts it again in
the background for you. Because I
wired everything up with the inte-
gration settings, I don’t have to write
any code to make that happen.

When all is said and done, I return
a message via HttpResponse, relay-
ing the function’s success or failure.

Compiling and
Testing the Function
Functions get compiled when you
save them. I’m going to randomly
delete something important in the
code so you can see the compiler
in action, with results being dis-
played in the log window below
the code window. Figure 6 shows
the compiler output, highlighting
the chaos I created by deleting
an open brace from line 13. Even
without a debugger, I’ve found that

Figure 6 The Log Window Displaying Compiler Information Including Errors

Figure 7 The Test Pane After Running a Test on the Function

The code window is amazing
at parsing the language you’re
working in, and when you save,
any compiler errors, which are

very detailed, also get output to
the debug window.

0118msdn_LermanDPts_v5_8-14.indd 12 12/12/17 8:55 AM

Americas: +1 903 306 1676 EMEA: +44 141 628 8900 Oceania: +61 2 8006 6987
sales@asposeptyltd.com

File Format APIs

Untitled-1 1 11/6/17 12:31 PM

mailto:sales@asposeptyltd.com
https://downloads.aspose.com

msdn magazine14 Data Points

seeing these errors helps me work through code I’ve had to write
without the aid of IntelliSense or other coding tools in my IDEs.
At the same time, I learned how much I depend on those tools!

When the code is fixed up and the compiler is happy, the log will
display the “Reloading” message followed by “Compilation succeeded.”

Now it’s time to test the function and you can do that right in the
same window where you’re coding the function. To the right of the
code editor are two tabbed panes. One displays the list of files related
to the function. By default, there are only two, the run.csx file I’m
currently looking at and a function.json file that contains all of the
settings defined in the UI. The other tab is for running tests. This
built-in test UI is like a mini-Postman or Fiddler application for cre-
ating HTTP requests with a lot less effort because it’s already aware
of the function to be tested. All you need to do is insert a JSON ob-
ject to represent the incoming request. The test UI defaults to sending
an HTTP Post, so you don’t even need to change that for this test.
Enter the following JSON into the Request Body textbox. The
schema is important, but you can use whatever values you want:

{
 "userId": "54321",
 "userName": "Julie",
 "deviceName" : "XBox",
 "dateTime": "2017-10-25 15:26:00",
 "score" : "5",
 "worthit" : "true",
 "logged": ""
}

Next, click the Run button on the Test pane. The test will call the
function, passing in the request body, and then display any HTTP
results in the Output window. In Figure 7, you can see the output
“54321 was created,” as well as the log output from the function in
the Logs window.

Viewing the New Data in the Cosmos DB Database
What you can’t see here is that as a result of this first successful test,
the CookieBinge Cosmos DB database was created, and in it, the
Binge collection where this document was stored. Let’s take a look at
that before wrapping up this installment of my multi-part column.

You can do this by first opening the Cosmos DB account in
the portal where you created this database. Mine is called data-
pointscosmosdb, so I’ll go to All Resources and type datapoints
in the filter to find it. Once I open the account, I can see all of the
collections and databases there, although the only one I have is
my Binges collection in the CookieBinge database, as shown in
Figure 8. That’s what just got created by the function.

Click on Binges to open up the Data Explorer for that collection.
I’ve run the test twice, so you can see in Figure 9 that two docu-
ments were stored in the collection. The first seven properties in
the document are the properties I defined. The rest are metadata
that Cosmos DB and the relevant APIs use for tasks like indexing,
searching, partitioning and more.

Looking Ahead
If you look back at Figure 7, you’ll see there’s a Get Function URL link
above the code window. That URL is what I’ll use in the CookieBinge

app to send data to the cloud.
Now that you’ve seen how to cre-

ate the function and hook it up with
Cosmos DB, my next column will
show you how to build two more
functions to retrieve different views
of the data. The final installment will
show how to call the functions from

the CookieBinge app and display
their results.	 n

Julie Lerman is a Microsoft Regional
Director, Microsoft MVP, software team
coach and consultant who lives in the hills
of Vermont. You can find her presenting
on data access and other topics at user
groups and conferences around the world.
She blogs at the datafarm.com/blog and
is the author of “Programming Entity
Framework,” as well as a Code First and a
DbContext edition, all from O’Reilly Media.
Follow her on Twitter: @julielerman
and see her Pluralsight courses at
juliel.me/PS-Videos.

Thanks to the following Microsoft
technical expert for reviewing this
article: Jeff HollanFigure 9 Looking at the Stored Documents in Cosmos DB in the Portal

Figure 8 The Binges Collection Listed in the datapointscosmosdb Account

This built-in test UI is like a mini-
Postman or Fiddler application.

0118msdn_LermanDPts_v5_8-14.indd 14 12/12/17 8:55 AM

http://datafarm.com/blog
www.twitter.com/julielerman
http://juliel.me/PS-Videos

Data Quality Made Easy.
Your Data, Your Way.

Start Your Free Trial
www.melissa.com/msft-pd

@

NAME

Our data quality solutions are available
on-premises and in the Cloud – fast,
easy to use, and powerful developer
tools and plugins for the Microsoft®
Product Ecosystem.

Melissa provides the full spectrum of data

quality to ensure you have data you can trust.

We pro�le, standardize, verify, match and

enrich global People Data – name, address,

email, phone, and more.

Melissa Data is now Melissa.
See What’s New at www.Melissa.com 1-800-MELISSA

Untitled-9 1 12/8/17 2:37 PM

http://www.melissa.com/msft-pd
http://www.Melissa.com

msdn magazine16

In my last column, I introduced Azure Machine Learning Workbench
(Azure ML Workbench), a new tool for professional data scientists
and machine learning (ML) practitioners. This stands in stark con-
trast to Azure Machine Learning Studio (Azure ML Studio), which
is a tool primarily geared toward beginners. However, that doesn’t
mean Azure ML Workbench is only for experienced data scientists.
Intermediate and even entry-level data scientists can also benefit
from the tools provided in Azure ML Workbench.

Loading the Iris Classifier Project Templates
As noted in my previous column, Azure ML Workbench provides
numerous project templates (I used the Linear Regression tem-
plate). This time I’ll utilize the Classifying Iris project template to
demonstrate even more features of Azure ML Workbench. If you
haven’t already installed Azure ML Workbench, please refer to the
documentation at bit.ly/2j2NVdH.

The Iris data set is a multi-variate data set that consists of 50
samples from each of three species of Iris.
Four features were measured from each
sample: the length and the width of the
sepals and petals. Based on the combina-
tion of these four features, the species of
Iris can be determined. It is an oft-used
sample data set in data science and ML.

Open Azure ML Workbench, select
Projects and click on the plus sign. In the
context menu that appears, choose New
Project to create a new project. Name the
project IrisClassifier. Look for Classifying
Iris in the Project Templates, click on it and
click on the Create button (see Figure 1).

Viewing the Code
Once the project loads into Azure ML
Workbench, click on the folder icon on
the left side to reveal all the files included.
Click on the iris_sklearn.py file to view
its contents in the editor. It should look
similar to Figure 2.

In case you were wondering, the code is
in Python, a language popular with data
scientists and ML practitioners. Python
enjoys a diversity of ML, scientific and

plotting libraries that provide the language with a rich ecosystem
of tools and utilities. One of these is scikit-learn, a popular ML
library. Various segments of the scikit-learn, referred to as sklearn

in the code, are imported into the project in lines seven through
14. While a full tutorial on the Python language falls outside the
scope of this article, the syntax should be familiar to any C# devel-
oper. The focus here will be on building models with scikit-learn.

Workflow of an Azure ML
Workbench Project
The first step in any ML project is loading
the data. The second step is often the more
laborious and time-consuming: wrangling
the data. This is where Azure ML Work-
bench really shines. Click on the iris.csv file
to see what the raw data looks like. Note
that this file lacks column names. Now,
click on the iris.dprep file list on the left-
hand side of the screen. Note the number
of steps taken to clean the data. The steps
add names to the columns and remove
rows where the Species column is null.
Click on the down arrow to the right of
the Filter Species step. In the context menu
that appears click Edit to display the Filter
Column dialog shown in Figure 3. The
rule is set up to remove any rows where the
Species column is null. Note that there are
additional options to add extra conditions.
This dialog box will be an invaluable tool
in your data science projects, as data rarely
comes in a clean format that’s consumable
by ML algorithms.

Creating Models in Azure ML Workbench

Artificially Intelligent FRANK LA VIGNE

Figure 1 Choosing the Classifying Iris
Project Template

Intermediate and even entry-
level data scientists can also

benefit from the tools provided
in Azure Azure ML Workbench.

0118msdn_LaVigneAI_v3_16-20.indd 16 12/12/17 8:53 AM

http://bit.ly/2j2NVdH

17January 2018msdnmagazine.com

After referencing various libraries and initializing the local envi-
ronment, the code loads the data by executing the iris.dprep file on
line 28, which loads the data file and performs all the steps defined:

iris = run('iris.dprep', dataflow_idx=0, spark=False)

The output is a pandas DataFrame with the cleaned data. A
pandas DataFrame is a two-dimensional data structure similar to

a table in a SQL database or in a
spreadsheet. You can read more
about DataFrames at bit.ly/2BlWl6K.

Now that the data has been
cleaned and loaded, it’s time to sepa-
rate the data into features and labels.
Features make up the various fields
needed to make a prediction. In
this case, given the widths and
lengths for Sepals and Petals, the
algorithm will predict to which
species of Iris the plant belongs.
In this case, the features are: Sepal
Length, Sepal Width, Petal Length
and Petal Width. The label, or pre-
dicted value, is the Species. Line 32
in the iris_sklearn.py file separates
the DataFrame into two arrays: X
for the features and Y for the label,
as shown here (strictly speaking,
X and Y are NumPy arrays, a data
structure from the NumPy library):

X, Y = iris[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']].values,
 iris['Species'].values

Once the data is separated into a label and features, it’s time to
separate the data into a training set and a test set. The following
line of code randomly reserves 35 percent of the rows in the input
data set and places it into Y_train and Y_test; the remaining 65
percent go into X_train and X_test:

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.35,
 random_state=0

In supervised learning, the correct values to the label are known.
The algorithm is trained by passing the features and label to it. The
algorithm then discovers the relationships and patterns between
the features and the correct label. The following line creates an ML

model with a logistic regression algorithm
against the training data:

clf1 = LogisticRegression(C=1/reg).fit(X_train, Y_train)

Logistic regression is a statistical method
analyzing data sets where there are one or
more variables that determine an outcome
(bit.ly/2zQ1hVe). In this case, the dimensions of
the sepals and petals determine the Iris species.

Once trained, the algorithm is tested for accu-
racy by calling the score method on the model:

accuracy = clf1.score(X_test, Y_test)
print ("Accuracy is {}".format(accuracy))

The best way to understand this is to actually
run the code. However, before that can be done,
there’s one more step. This project uses matplotlib,
a popular plotting library for Python. To install
it, select Open Command Prompt from the File
menu. At the command line, type the following:

pip install matplotlib

Once installed, type the following to the
command line:
python iris_sklearn.py

Figure 2 The iris_sklearn.py File in the Azure ML Workbench Text Editor

Figure 3 The Filter Column Dialog Window

The first step in any ML project is
loading the data.

0118msdn_LaVigneAI_v3_16-20.indd 17 12/12/17 8:53 AM

http://msdnmagazine.com
http://bit.ly/2BlWl6K
http://bit.ly/2zQ1hVe

msdn magazine18 Artificially Intelligent

In a few moments, the output
should look like Figure 4.

As displayed in the command
window, the accuracy of the model
is 0.6792452830188679, meaning
that it correctly guesses the species
of Iris in the test data 67.92 percent
of the time.

Executing the Code
from Within Azure
ML Workbench
While running the code in the
command line is useful, Azure ML
Workbench provides a way to make
this simpler and capture informa-
tion about the jobs that have run.
Look for the Run button. To the immediate left of it,
there are two dropdowns and a textbox. By default,
it should look like Figure 5. Click Run.

This executes the script locally and tracks the execution of the
script via the Jobs tab in Azure ML Workbench. After the program
runs, output and details about the run will appear. To see that, click
on the iris_sklearn.py entry in the run list. Choose the first record
in the data grid under Runs. Review the Run Properties section
to see basic performance statistics of the run. Scroll down to see
the Metrics and Visualization sections to see the output from the
script as shown in Figure 6.

In my previous article, I explained how to explore the results of
a job and view the job history. Please refer to that for more details
(msdn.com/magazine/mt814414).

Persisting a Trained Model
While running the iris_sklearn.py
script either through Azure ML
Workbench or the command line,
you’ll likely notice that the pro-
cess takes several seconds. On my
Surface Book, it takes about nine
seconds. While different hardware
configurations will produce differ-
ent results, the process is hardly
instantaneous. Most of the pro-
cessing time is devoted to training
the model. Fortunately, there’s little
need to continually train a model.
Lines 79 through 82 take the trained
model and persist it to disk using
the Pickle library (bit.ly/2im9w3O):

print ("Export the model to model.pkl")
f = open('./outputs/model.pkl', 'wb')
pickle.dump(clf1, f)
f.close()

Lines 86 and 87 demonstrate
how to restore the trained model
from disk:

f2 = open('./outputs/model.pkl', 'rb')
clf2 = pickle.load(f2)

The next step is to create some sample data and use the model
to predict the species, which is done on lines 89 and 98:

Predict on a new sample
X_new = [[3.0, 3.6, 1.3, 0.25]]
print ('New sample: {}'.format(X_new))

Add random features to match the training data
X_new_with_random_features = np.c_[X_new, random_state.randn(1, n)]

Score on the new sample
pred = clf2.predict(X_new_with_random_features)
print('Predicted class is {}'.format(pred))

Figure 4 Output of the iris_sklearn.py Program

Figure 5 Running Files in Azure ML Workbench

Figure 6 Metrics and Visualizations Shown in Azure ML Workbench

0118msdn_LaVigneAI_v3_16-20.indd 18 12/12/17 8:53 AM

http://msdn.com/magazine/mt814414
http://bit.ly/2im9w3O

(888) 850-9911
Sales Hotline - US & Canada:

/update/2018/01

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2018 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
2 New Century Place
East Street
Reading, Berkshire
RG1 4ET
United Kingdom

Asia / Pacific Headquarters
ComponentSource
7F Kojimachi Ichihara Bldg
1-1-8 Hirakawa-cho
Chiyoda-ku
Tokyo, 102-0093
Japan www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Help & Manual Professional from $586.04
Help and documentation for .NET and mobile applications.

• Powerful features in an easy, accessible and intuitive user interface

• As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

• Single source, multi-channel publishing with conditional and customized output features

• Output to responsive HTML, CHM, PDF, MS Word, ePUB, Kindle or print

• Styles and Templates give you full design control

BEST SELLER

www.componentsource.com

DevExpress DXperience 17.1 from $1,439.99
The complete range of DevExpress .NET controls and libraries for all major Microsoft platforms.

• WinForms - New TreeMap control, Chart series types and Unbound Data Source

• WPF - New Wizard control and Data Grid scrollbar annotations

• ASP.NET - New Vertical Grid control, additional Themes, Rich Editor Spell Checking and more

• Windows 10 Apps - New Hamburger Sub Menus, Splash Screen and Context Toolbar controls

• CodeRush - New debug visualizer expression map and code analysis diagnostics

BEST SELLER

SpreadJS from $1,476.51
Deliver intuitive, e� cient, multi-functional, pure JavaScript spreadsheets for Enterprise apps.

• Harness the power of a spreadsheet to display and manage data like Microsoft Excel

• Go beyond the grid with cards, trellis, calendar, Gantt, news feed, timeline and more

• Renders to the HTML canvas for a fast, interactive user experience across all browsers

• Modularized - so you only need to load the JavaScript that contains the features you need

• A Client-side component - works with Windows, Linux, MacOS, Android and iOS

BEST SELLER

Apptimized from $5,292.00
Discover, package, test and manage applications in the cloud.

• Rapidly test and prepare apps for Windows 10 without the need for hardware or software

• Capture a default install automatically and create customized discovery documentation

• The service is con� gured on a tenant philosophy, meaning that customer data is protected

• The advanced MSI Editor provides full MSI and App-V editing capability

• Supports bulk upload source media, and zip � le capability for requests that have multiple EXEs

BEST SELLER

Untitled-9 1 12/8/17 2:30 PM

http://www.componentsource.com

msdn magazine20 Artificially Intelligent

If you refer back to Figure 4, you can see toward the lower
middle of the screenshot that the predicted class is [‘Iris-setosa’].

Passing Parameters
You may have noticed the Arguments textbox next to the Run but-
ton. Earlier, I left this field blank.

In the iris_sklearn.py file, lines 47 and 48, check for the presence of
a parameter, convert the value to a float, and then set the reg variable
to its value. If no parameters are sent to the program, the variable
retains the value it was initialized with on line 45: 0.01, like so:

if len(sys.argv) > 1:
 reg = float(sys.argv[1])

The reg value gets passed as a parameter to the LogisticRegression
method and sets the Regularization rate. Regularization rate controls
the introduction of additional information in order to avoid over-
fitting the model. Overfitting occurs when the model performs too
well on test data. A model that provides highly accurate results with
test data will likely be unusable when given data
outside of the test set in the future. More infor-
mation about regularization and overfitting is
available at bit.ly/2kfLU1f and bit.ly/2iatJpC, respectively.

Enter the number 10 into the Arguments textbox
and click Run once more, making sure that Local
and iris_sklearn.py are both selected. When com-
pleted, click on the Jobs tab, browse through it and

choose iris_sklearn.py. Note that the charts now
have a second data point, as shown in Figure 7.

Now, click on the files icon and click on
the run.py file. This program will call the
iris_sklearn.py file with a new regularization
parameter that’s half the value of the previous
run until the value gets below 0.005. Because
I already ran the script with a parameter of
10, I would like to change line seven to five.
However, as you may have already noticed, the
text isn’t editable. To edit the text, click on the
dropdown on the upper-left portion of the text
area to switch to edit mode. There’s an option
to edit in another program, such as Visual
Studio Code. However, in this case, choose
Edit in Workbench Text Editor (see Figure 8).

After changing line 7 to reg = 5, click on
the save icon. Next, click on Open Command
Prompt from the File menu and type the fol-
lowing command and hit enter:

python run.py

The program will run and then pass a command to the under-
lying OS to run the iris_sklearn.py file through the Azure Azure
ML Workbench system. Notice the program output in the com-
mand-line window and inside the Jobs pane within the Azure
Azure ML Workbench program:

os.system('az ml experiment submit -c local ./iris_sklearn.py {}'.format(reg))

Click on the Jobs icon in the toolbar on the left-hand side of the screen
and then click the entry for iris_sklearn.py. Notice how many more
data points there are in the graphs. The run.py program executed the
script a number of times with a different regularization rate each time.

Wrapping Up
In this article, I explored a common sample data set in data science
with Azure ML Workbench, demonstrating the power and flexibil-
ity of the program. While not as straightforward or approachable
as Azure ML Studio, Azure ML Workbench opens up a lot more
possibilities to the data scientist and ML practitioner. First and
foremost is the ability to install and consume any Python library,
including Pickle, matplotlib and, of course, Sci-Kit Learn. There’s
also a command-line interface that can accept commands to install
Python libraries and run Python code as tracked jobs inside Azure
ML Workbench. Tracked jobs have the added benefit of exploring
the results graphically to make data experimentation faster.

Azure ML Workbench includes several more features that I will
explore in future articles, such as support for Jupyter notebooks,
source control integration and Docker images. The tool truly brings

great capabilities to the data science field.	 n

Frank La Vigne leads the Data & Analytics practice at
Wintellect and co-hosts the DataDriven podcast. He blogs
regularly at FranksWorld.com and you can watch him on his
YouTube channel, “Frank’s World TV” (FranksWorld.TV).

Thanks to the following technical expert for reviewing
this article: Andy Leonard

Figure 7 A Second Data Point Added to the iris_sklearn.py Jobs Tab Charts

Figure 8 Switch to Edit Mode

Tracked jobs have the added
benefit of exploring the results

graphically to make data
experimentation faster.

0118msdn_LaVigneAI_v3_16-20.indd 20 12/12/17 8:53 AM

http://bit.ly/2kfLU1f
http://bit.ly/2iatJpC
http://FranksWorld.com
http://FranksWorld.TV

MSDN MAGAZINE VENDOR PROFILE

What Makes RavenDB Unique
We developed RavenDB 4.0 to tackle the most common challenges
your database faces in handling the scale and scope of today’s data.
Our credo of it just works strives to save your DBA and development
team time and resources by resolving the most common issues before
they occur, so they can devote more energy towards useful work.

Enjoy the Best of All Worlds
RavenDB employs the latest in database development to benefit
your business in several ways:

High Speed Performance. On commodity servers, RavenDB can
 reach over 100,000 writes and half a million reads per second per
node. Execute at millisecond performance right until you hit the limits
of your hardware.

Easy to Install. You can install, set up, and secure RavenDB in a matter
of minutes. The ramp up to learn is very quick and our SQL like query
language makes RavenDB easy to use.

ACID. Upgrade to NoSql and take the best part of a relational
database with you. Make your data integrity a constant with one of
the only document databases that is fully transactional.

Scale up Quickly. Be ready for high traffic days like Black Friday by
adding nodes to your database cluster and replicating your database
to them in a matter of hours. Reduce latency and boost performance
with additional capacity.

Flexibility. Our agile database is schemaless, giving you maximum
flexibility. You don’t have to fight your schema every time you want to
make big changes. There is no need for expensive migrations.
RavenDB lets you adapt quickly and seamlessly as you rise up the
learning curve.

Keep Your Release Cycle Moving with Fewer Interruptions. We
provide the best support in the industry, but we developed RavenDB
so you won’t need it. We want you to use RavenDB to build an
application, not to waste precious time and money on the phone with
our support engineers. RavenDB comes with a series of built-in fixes
that help you cut down on overhead by anticipating the most

magazine

MSDN MAGAZINE VENDOR PROFILE

common problems you can expect to encounter, and resolving them
before they become an issue.

Always be there for your users. Our distributed database lets you
operate over a cluster of servers, giving you high-availability to
wherever your users are. Instant replication keeps several copies of your
database running at once so your customers never have to wait in line.

Choose your own hosting. You can run RavenDB on-premise, or in
the cloud through AWS or Azure.

Get Started at No Cost
Download RavenDB at https://ravendb.net/get-ravendb-for-free
and try it out. Your community license includes 3 cores, a data cluster
with up to 3 nodes, our state of the art GUI interface, and 6 GB of RAM.

About Hibernating Rhinos
Hibernating Rhinos LTD. is a leader in open source NoSQL database
architecture and design. It’s founder Oren Eini and his team are the
creators of RavenDB, a leading OLTP document database that is fully
transactional (ACID). Hibernating Rhinos operates in the United States,
Europe, Latin America, and Israel. It’s customer base includes Fortune
500 Companies, one of them running over 1.5 million instances of
RavenDB.

RavenDB is one of the few fully transactional NoSQL databases.
It’s open source, speed-obsessed, and a pleasure to use.

For more information, visit g https://ravendb.net/

RavenDB OLTP Made Simple

Untitled-9 1 12/8/17 2:33 PM

https://ravendb.net/get-ravendb-for-free
https://ravendb.net/
https://ravendb.net/

msdn magazine22

Imagine you’re exposing a specialized sort routine to
operate in-place on data in memory. You’d likely expose a method
that takes an array and provide an implementation that operates
over that T[]. That’s great if your method’s caller has an array and
wants the whole array sorted, but what if the caller only wants part
of it sorted? You’d probably then also expose an overload that took
an offset and a count. But what if you wanted to support data in
memory that wasn’t in an array, but instead came from native code,
for example, or lived on the stack and you only had a pointer and
a length? How could you write your sort method that operated
on such an arbitrary region of memory, and yet worked equally
well with full arrays or with subsets of arrays, and that also worked
equally well with managed arrays and unmanaged pointers?

Or take another example. You’re implementing an operation
over System.String, such as a specialized parsing method. You’d
likely expose a method that takes a string and provide an imple-
mentation that operates on strings. But what if you wanted to sup-

port operating over a subset of that string? String.Substring could
be used to carve out just the piece that’s interesting to them, but
that’s a relatively expensive operation, involving a string allocation
and memory copy. You could, as mentioned in the array example,
take an offset and a count, but then what if the caller doesn’t have
a string but instead has a char[]? Or what if the caller has a char*,
like one they created with stackalloc to use some space on the
stack, or as the result of a call to native code? How could you write
your parsing method in a way that didn’t force the caller to do any
allocations or copies, and yet worked equally well with inputs of
type string, char[] and char*?

In both situations, you might be able to use unsafe code and
pointers, exposing an implementation that accepted a pointer
and a length. That, however, eliminates the safety guarantees
that are core to .NET and opens you up to problems like buffer
overruns and access violations that for most .NET developers are
a thing of the past. It also invites additional performance pen-
alties, such as needing to pin managed objects for the duration
of the operation so that the pointer you retrieve remains valid.
And depending on the type of data involved, getting a pointer
at all may not be practical.

There’s an answer to this conundrum, and its name is Span<T>.

What Is Span<T>?
System.Span<T> is a new value type at the heart of .NET. It enables
the representation of contiguous regions of arbitrary memory,

. N E T

All About Span:
Exploring a New
.NET Mainstay
Stephen Toub

This article discusses:
•	New Span<T> and related types in .NET for safe and efficient

memory access

•	New C# language features for working with spans

•	.NET runtime optimizations when working with spans

Technologies discussed:
Microsoft .NET Framework, .NET Core, C#

0118msdn_ToubSharp_v6_22-27.indd 22 12/12/17 8:59 AM

23January 2018msdnmagazine.com

regardless of whether that memory is associated with a managed
object, is provided by native code via interop, or is on the stack.
And it does so while still providing safe access with performance
characteristics like that of arrays.

For example, you can create a Span<T> from an array:
var arr = new byte[10];
Span<byte> bytes = arr; // Implicit cast from T[] to Span<T>

From there, you can easily and efficiently create a span to repre-
sent/point to just a subset of this array, utilizing an overload of the
span’s Slice method. From there you can index into the resulting span
to write and read data in the relevant portion of the original array:

Span<byte> slicedBytes = bytes.Slice(start: 5, length: 2);
slicedBytes[0] = 42;
slicedBytes[1] = 43;
Assert.Equal(42, slicedBytes[0]);
Assert.Equal(43, slicedBytes[1]);
Assert.Equal(arr[5], slicedBytes[0]);
Assert.Equal(arr[6], slicedBytes[1]);
slicedBytes[2] = 44; // Throws IndexOutOfRangeException
bytes[2] = 45; // OK
Assert.Equal(arr[2], bytes[2]);
Assert.Equal(45, arr[2]);

As mentioned, spans are more than just a way to access and
subset arrays. They can also be used to refer to data on the stack.
For example:

Span<byte> bytes = stackalloc byte[2]; // Using C# 7.2 stackalloc support for spans
bytes[0] = 42;
bytes[1] = 43;
Assert.Equal(42, bytes[0]);
Assert.Equal(43, bytes[1]);
bytes[2] = 44; // throws IndexOutOfRangeException

More generally, they can be used to refer to arbitrary pointers and
lengths, such as to memory allocated from a native heap, like so:

IntPtr ptr = Marshal.AllocHGlobal(1);
try
{
 Span<byte> bytes;
 unsafe { bytes = new Span<byte>((byte*)ptr, 1); }
 bytes[0] = 42;
 Assert.Equal(42, bytes[0]);
 Assert.Equal(Marshal.ReadByte(ptr), bytes[0]);
 bytes[1] = 43; // Throws IndexOutOfRangeException
}
finally { Marshal.FreeHGlobal(ptr); }

The Span<T> indexer takes advantage of a C# language feature
introduced in C# 7.0 called ref returns. The indexer is declared
with a “ref T” return type, which provides semantics like that of
indexing into arrays, returning a reference to the actual storage
location rather than returning a copy of what lives at that location:

public ref T this[int index] { get { ... } }

The impact of this ref-returning indexer is most obvious via
example, such as by comparing it with the List<T> indexer, which
is not ref returning. Here’s an example:

struct MutableStruct { public int Value; }
...
Span<MutableStruct> spanOfStructs = new MutableStruct[1];
spanOfStructs[0].Value = 42;
Assert.Equal(42, spanOfStructs[0].Value);

var listOfStructs = new List<MutableStruct> { new MutableStruct() };
listOfStructs[0].Value = 42; // Error CS1612: the return value is not a variable

A second variant of Span<T>, called System.ReadOnlySpan<T>,
enables read-only access. This type is just like Span<T>, except its
indexer takes advantage of a new C# 7.2 feature to return a “ref
readonly T” instead of a “ref T,” enabling it to work with immutable
data types like System.String. ReadOnlySpan<T> makes it very ef-
ficient to slice strings without allocating or copying, as shown here:

string str = "hello, world";
string worldString = str.Substring(startIndex: 7, length: 5); // Allocates
ReadOnlySpan<char> worldSpan =
 str.AsReadOnlySpan().Slice(start: 7, length: 5); // No allocation
Assert.Equal('w', worldSpan[0]);
worldSpan[0] = 'a'; // Error CS0200: indexer cannot be assigned to

Spans provide a multitude of benefits beyond those already
mentioned. For example, spans support the notion of reinterpret
casts, meaning you can cast a Span<byte> to be a Span<int>
(where the 0th index into the Span<int> maps to the first four
bytes of the Span<byte>). That way if you read a buffer of bytes,
you can pass it off to methods that operate on grouped bytes as ints
safely and efficiently.

How Is Span<T> Implemented?
Developers generally don’t need to understand how a library they’re
using is implemented. However, in the case of Span<T>, it’s worth-
while to have at least a basic understanding of the details behind
it, as those details imply something about both its performance
and its usage constraints.

First, Span<T> is a value type containing a ref and a length,
defined approximately as follows:

public readonly ref struct Span<T>
{
 private readonly ref T _pointer;
 private readonly int _length;
 ...
}

The concept of a ref T field may be strange at first—in fact,
one can’t actually declare a ref T field in C# or even in MSIL. But
Span<T> is actually written to use a special internal type in the
runtime that’s treated as a just-in-time (JIT) intrinsic, with the JIT
generating for it the equivalent of a ref T field. Consider a ref usage
that’s likely much more familiar:

public static void AddOne(ref int value) => value += 1;
...
var values = new int[] { 42, 84, 126 };
AddOne(ref values[2]);
Assert.Equal(127, values[2]);

This code passes a slot in the array by reference, such that
(optimizations aside) you have a ref T on the stack. The ref T in
the Span<T> is the same idea, simply encapsulated inside a struct.
Types that contain such refs directly or indirectly are called ref-like
types, and the C# 7.2 compiler allows declaration of such ref-like
types by using ref struct in the signature.

From this brief description, two things should be clear:
1. �Span<T> is defined in such a way that operations can be as

efficient as on arrays: indexing into a span doesn’t require
computation to determine the beginning from a pointer
and its starting offset, as the ref field itself already encapsu-
lates both. (By contrast, ArraySegment<T> has a separate
offset field, making it more expensive both to index into
and to pass around.)

System.Span<T> is a new value
type at the heart of .NET.

0118msdn_ToubSharp_v6_22-27.indd 23 12/12/17 8:59 AM

http://msdnmagazine.com

msdn magazine24 .NET

2. �The nature of Span<T> as a ref-like type brings with it some
constraints due to its ref T field.

This second item has some interesting ramifications that result in
.NET containing a second and related set of types, led by Memory<T>.

What Is Memory<T> and Why Do You Need It?
Span<T> is a ref-like type as it contains a ref field, and ref fields
can refer not only to the beginning of objects like arrays, but also
to the middle of them:

var arr = new byte[100];
Span<byte> interiorRef1 = arr.AsSpan().Slice(start: 20);
Span<byte> interiorRef2 = new Span<byte>(arr, 20, arr.Length – 20);
Span<byte> interiorRef3 =
 Span<byte>.DangerousCreate(arr, ref arr[20], arr.Length – 20);

These references are called interior pointers, and tracking them
is a relatively expensive operation for the .NET runtime’s garbage
collector. As such, the runtime constrains these refs to only live
on the stack, as it provides an implicit low limit on the number of
interior pointers that might be in existence.

Further, Span<T> as previously shown is larger than the
machine’s word size, which means reading and writing a span is not
an atomic operation. If multiple threads read and write a span’s fields
on the heap at the same time, there’s a risk of “tearing.” Imagine an
already initialized span containing a valid reference and a corre-
sponding _length of 50. One thread starts writing a new span over
it and gets as far as writing the new _pointer value. Then, before it
can set the corresponding _length to 20, a second thread reads the
span, including the new _pointer but the old (and longer) _length.

As a result, Span<T> instances can only live on the stack, not on
the heap. This means you can’t box spans
(and thus can’t use Span<T> with existing
reflection invoke APIs, for example, as
they require boxing). It means you can’t
have Span<T> fields in classes, or even in
non-ref-like structs. It means you can’t use
spans in places where they might implicitly
become fields on classes, for instance by
capturing them into lambdas or as locals
in async methods or iterators (as those
“locals” may end up being fields on the
compiler-generated state machines.) It also
means you can’t use Span<T> as a generic
argument, as instances of that type argument
could end up getting boxed or otherwise
stored to the heap (and there’s currently no
“where T : ref struct” constraint available).

These limitations are immaterial for many
scenarios, in particular for compute-bound
and synchronous processing functions. But
asynchronous functionality is another story.
Most of the issues cited at the beginning of
this article around arrays, array slices, native
memory, and so on exist whether dealing with
synchronous or asynchronous operations.
Yet, if Span<T> can’t be stored to the heap and
thus can’t be persisted across asynchronous
operations, what’s the answer? Memory<T>.

Memory<T> looks very much like an ArraySegment<T>:
public readonly struct Memory<T>
{
 private readonly object _object;
 private readonly int _index;
 private readonly int _length;
 ...
}

You can create a Memory<T> from an array and slice it just as
you would a span, but it’s a (non-ref-like) struct and can live on
the heap. Then, when you want to do synchronous processing, you
can get a Span<T> from it, for example:

static async Task<int> ChecksumReadAsync(Memory<byte> buffer, Stream stream)
{
 int bytesRead = await stream.ReadAsync(buffer);
 return Checksum(buffer.Span.Slice(0, bytesRead));
 // Or buffer.Slice(0, bytesRead).Span
}

static int Checksum(Span<byte> buffer) { ... }

As with Span<T> and ReadOnlySpan<T>, Memory<T> has a
read-only equivalent, ReadOnlyMemory<T>. And as you’d expect,
its Span property returns a ReadOnlySpan<T>. See Figure 1 for
a quick summary of built-in mechanisms for converting between
these types.

You’ll notice that Memory<T>’s _object field isn’t strongly
typed as T[]; rather, it’s stored as an object. This highlights
that Memory<T> can wrap things other than arrays, like
System.Buffers.OwnedMemory<T>. OwnedMemory<T> is an
abstract class that can be used to wrap data that needs to have its
lifetime tightly managed, such as memory retrieved from a pool.
That’s a more advanced topic beyond the scope of this article, but

Figure 1 Non-Allocating/Non-Copying Conversions Between Span-Related Types

From To Mechanism
ArraySegment<T> Memory<T> Implicit cast, AsMemory method
ArraySegment<T> ReadOnlyMemory<T> Implicit cast, AsReadOnlyMemory method
ArraySegment<T> ReadOnlySpan<T> Implicit cast, AsReadOnlySpan method
ArraySegment<T> Span<T> Implicit cast, AsSpan method
ArraySegment<T> T[] Array property
Memory<T> ArraySegment<T> TryGetArray method
Memory<T> ReadOnlyMemory<T> Implicit cast, AsReadOnlyMemory method
Memory<T> Span<T> Span property
ReadOnlyMemory<T> ArraySegment<T> DangerousTryGetArray method
ReadOnlyMemory<T> ReadOnlySpan<T> Span property
ReadOnlySpan<T> ref readonly T Indexer get accessor, marshaling methods
Span<T> ReadOnlySpan<T> Implicit cast, AsReadOnlySpan method
Span<T> ref T Indexer get accessor, marshaling methods
String ReadOnlyMemory<char> AsReadOnlyMemory method
String ReadOnlySpan<char> Implicit cast, AsReadOnlySpan method
T[] ArraySegment<T> Ctor, Implicit cast
T[] Memory<T> Ctor, Implicit cast, AsMemory method
T[] ReadOnlyMemory<T> Ctor, Implicit cast, AsReadOnlyMemory method
T[] ReadOnlySpan<T> Ctor, Implicit cast, AsReadOnlySpan method
T[] Span<T> Ctor, Implicit cast, AsSpan method
void* ReadOnlySpan<T> Ctor
void* Span<T> Ctor

0118msdn_ToubSharp_v6_22-27.indd 24 12/12/17 8:59 AM

25January 2018msdnmagazine.com

it’s how Memory<T> can be used to, for example, wrap pointers
into native memory. ReadOnlyMemory<char> can also be used
with strings, just as can ReadOnlySpan<char>.

How Do Span<T> and Memory<T>
Integrate with .NET Libraries?
In the previous Memory<T> code snippet, you’ll notice a call
to Stream.ReadAsync that’s passing in a Memory<byte>. But
Stream.ReadAsync in .NET today is defined to accept a byte[].
How does that work?

In support of Span<T> and friends, hundreds of new members
and types are being added across .NET. Many of these are over-
loads of existing array-based and string-based methods, while
others are entirely new types focused on specific areas of process-
ing. For example, all the primitive types like Int32 now have Parse
overloads that accept a ReadOnlySpan<char> in addition to the
existing overloads that take strings. Imagine a situation where
you’re expecting a string that contains two numbers separated by
a comma (such as “123,456”), and you want to parse out those two
numbers. Today you might write code like this:

string input = ...;
int commaPos = input.IndexOf(',');
int first = int.Parse(input.Substring(0, commaPos));
int second = int.Parse(input.Substring(commaPos + 1));

That, however, incurs two string allocations. If you’re writing
performance-sensitive code, that may be two string allocations
too many. Instead, you can now write this:

string input = ...;
ReadOnlySpan<char> inputSpan = input.AsReadOnlySpan();
int commaPos = input.IndexOf(',');
int first = int.Parse(inputSpan.Slice(0, commaPos));
int second = int.Parse(inputSpan.Slice(commaPos + 1));

By using the new Span-based Parse overloads, you’ve made this
whole operation allocation-free. Similar parsing and formatting
methods exist for primitives like Int32 up through core types like
DateTime, TimeSpan and Guid, and even up to higher-level types
like BigInteger and IPAddress.

In fact, many such methods have been added across the frame-
work. From System.Random to System.Text.StringBuilder to
System.Net.Sockets, overloads have been added to make working
with {ReadOnly}Span<T> and {ReadOnly}Memory<T> simple
and efficient. Some of these even carry with them additional ben-
efits. For example, Stream now has this method:

public virtual ValueTask<int> ReadAsync(
 Memory<byte> destination,
 CancellationToken cancellationToken = default) { ... }

You’ll notice that unlike the existing ReadAsync method that
accepts a byte[] and returns a Task<int>, this overload not only
accepts a Memory<byte> instead of a byte[], but also returns a

ValueTask<int> instead of a Task<int>. ValueTask<T> is a struct
that helps avoid allocations in cases where an asynchronous
method is frequently expected to return synchronously, and
where it’s unlikely we can cache a completed task for all common
return values. For instance, the runtime can cache a completed
Task<bool> for a result of true and one for a result of false, but it
can’t cache four billion task objects for all possible result values
of a Task<int>.

Because it’s quite common for Stream implementations to
buffer in a way that makes ReadAsync calls complete synchro-
nously, this new ReadAsync overload returns a ValueTask<int>.
This means asynchronous Stream read operations that complete
synchronously can be entirely allocation-free. ValueTask<T>
is also used in other new overloads, such as in overloads of
Socket.ReceiveAsync, Socket.SendAsync, WebSocket.ReceiveAsync
and TextReader.ReadAsync.

In addition, there are places where Span<T> allows the frame-
work to include methods that in the past raised memory safety
concerns. Consider a situation where you want to create a string
containing a randomly generated value, such as for an ID of some
kind. Today you might write code that requires allocating a char
array, like this:

int length = ...;
Random rand = ...;
var chars = new char[length];
for (int i = 0; i < chars.Length; i++)
{
 chars[i] = (char)(rand.Next(0, 10) + '0');
}
string id = new string(chars);

You could instead use stack-allocation, and even take advantage
of Span<char>, to avoid needing to use unsafe code. This approach
also takes advantage of the new string constructor that accepts a
ReadOnlySpan<char>, like so:

int length = ...;
Random rand = ...;
Span<char> chars = stackalloc char[length];
for (int i = 0; i < chars.Length; i++)
{
 chars[i] = (char)(rand.Next(0, 10) + '0');
}
string id = new string(chars);

This is better, in that you’ve avoided the heap allocation, but
you’re still forced to copy into the string the data that was gener-
ated on the stack. This approach also only works when the amount
of space required is something small enough for the stack. If the
length is short, like 32 bytes, that’s fine, but if it’s thousands of bytes,
it could easily lead to a stack overflow situation. What if you could
write to the string’s memory directly instead? Span<T> allows you
to do that. In addition to string’s new constructor, string now also
has a Create method:

public static string Create<TState>(
 int length, TState state, SpanAction<char, TState> action);
...
public delegate void SpanAction<T, in TArg>(Span<T> span, TArg arg);

This method is implemented to allocate the string and then
hand out a writable span you can write to in order to fill in the
contents of the string while it’s being constructed. Note that the
stack-only nature of Span<T> is beneficial in this case, guaranteeing
that the span (which refers to the string’s internal storage) will
cease to exist before the string’s constructor completes, making it

Hundreds of new members
and types are being added

across .NET.

0118msdn_ToubSharp_v6_22-27.indd 25 12/12/17 8:59 AM

http://msdnmagazine.com

msdn magazine26 .NET

impossible to use the span to mutate the string after the construc-
tion is complete:

int length = ...;
Random rand = ...;
string id = string.Create(length, rand, (Span<char> chars, Random r) =>
{
 for (int i = 0; chars.Length; i++)
 {
 chars[i] = (char)(r.Next(0, 10) + '0');
 }
});

Now, not only have you avoided the allocation, you’re writing
directly into the string’s memory on the heap, which means you’re
also avoiding the copy and you’re not constrained by size limita-
tions of the stack.

Beyond core framework types gaining new members, many
new .NET types are being developed to work with spans for
efficient processing in specific scenarios. For example, devel-
opers looking to write high-performance microservices and
Web sites heavy in text processing can earn a significant per-
formance win if they don’t have to encode to and decode from
strings when working in UTF-8. To enable this, new types like
System.Buffers.Text.Base64, System.Buffers.Text.Utf8Parser and
System.Buffers.Text.Utf8Formatter are being added. These oper-
ate on spans of bytes, which not only avoids the Unicode encoding
and decoding, but enables them to work with native buffers that
are common in the very lowest levels of various networking stacks:

ReadOnlySpan<byte> utf8Text = ...;
if (!Utf8Parser.TryParse(utf8Text, out Guid value,
 out int bytesConsumed, standardFormat = 'P'))
 throw new InvalidDataException();

All this functionality isn’t just for public consumption; rather
the framework itself is able to utilize these new Span<T>-based
and Memory<T>-based methods for better performance. Call
sites across .NET Core have switched to using the new ReadAsync
overloads to avoid unnecessary allocations. Parsing that had been
done by allocating substrings now takes advantage of allocation-free
parsing. Even niche types like Rfc2898DeriveBytes have gotten
in on the action, taking advantage of the new Span<byte>-based
TryComputeHash method on System.Security.Cryptography.Hash
Algorithm to achieve a monstrous savings on allocation (a byte
array per iteration of the algorithm, which might iterate thousands
of times), as well as a throughput improvement.

This doesn’t stop at the level of the core .NET libraries; it con-
tinues all the way up the stack. ASP.NET Core now has a heavy
dependency on spans, for example, with the Kestrel server’s HTTP
parser written on top of them. In the future, it’s likely that spans
will be exposed out of public APIs in the lower levels of ASP.NET
Core, such as in its middleware pipeline.

What About the .NET Runtime?
One of the ways the .NET runtime provides safety is by ensuring
that indexing into an array doesn’t allow going beyond the length
of the array, a practice known as bounds checking. For example,
consider this method:

[MethodImpl(MethodImplOptions.NoInlining)]
static int Return4th(int[] data) => data[3];

On the x64 machine on which I’m typing this article, the gener-
ated assembly for this method looks like the following:

 sub rsp, 40
 cmp dword ptr [rcx+8], 3
 jbe SHORT G_M22714_IG04
 mov eax, dword ptr [rcx+28]
 add rsp, 40
 ret
G_M22714_IG04:
 call CORINFO_HELP_RNGCHKFAIL
 int3

That cmp instruction is comparing the length of the data array
against the index 3, and the subsequent jbe instruction is then
jumping to the range check failure routine if 3 is out of range (for
an exception to be thrown). The JIT needs to generate code that
ensures such accesses don’t go outside the bounds of the array, but
that doesn’t mean that every individual array access needs a bound
check. Consider this Sum method:

static int Sum(int[] data)
{
 int sum = 0;
 for (int i = 0; i < data.Length; i++) sum += data[i];
 return sum;
}

The JIT needs to generate code here that ensures the accesses to
data[i] don’t go outside the bounds of the array, but because the JIT
can tell from the structure of the loop that i will always be in range
(the loop iterates through each element from beginning to end),
the JIT can optimize away the bounds checks on the array. Thus,
the assembly code generated for the loop looks like the following:

G_M33811_IG03:
 movsxd r9, edx
 add eax, dword ptr [rcx+4*r9+16]
 inc edx
 cmp r8d, edx
 jg SHORT G_M33811_IG03

A cmp instruction is still in the loop, but simply to compare the
value of i (as stored in the edx register) against the length of the array
(as stored in the r8d register); no additional bounds checking.

The runtime applies similar optimizations to span (both Span<T>
and ReadOnlySpan<T>). Compare the previous example to the
following code, where the only change is on the parameter type:

static int Sum(Span<int> data)
{
 int sum = 0;
 for (int i = 0; i < data.Length; i++) sum += data[i];
 return sum;
}

The generated assembly for this code is almost identical:
G_M33812_IG03:
 movsxd r9, r8d
 add ecx, dword ptr [rax+4*r9]
 inc r8d
 cmp r8d, edx
 jl SHORT G_M33812_IG03

The assembly code is so similar in part because of the elimina-
tion of bounds checks. But also relevant is the JIT’s recognition of
the span indexer as an intrinsic, meaning that the JIT generates

The runtime can apply for spans
the same kinds of optimizations
it does for arrays, making spans

efficient for accessing data.

0118msdn_ToubSharp_v6_22-27.indd 26 12/12/17 8:59 AM

27January 2018msdnmagazine.com

special code for the indexer, rather than translating its actual IL
code into assembly.

All of this is to illustrate that the runtime can apply for spans
the same kinds of optimizations it does for arrays, making spans
an efficient mechanism for accessing data. More details are avail-
able in the blog post at bit.ly/2zywvyI.

What About the C# Language and Compiler?
I’ve already alluded to features added to the C# language and
compiler to help make Span<T> a first-class citizen in .NET.
Several features of C# 7.2 are related to spans (and in fact the
C# 7.2 compiler will be required to use Span<T>). Let’s look at
three such features.

Ref structs. As noted earlier, Span<T> is a ref-like type, which
is exposed in C# as of version 7.2 as ref struct. By putting the ref
keyword before struct, you tell the C# compiler to allow you to
use other ref struct types like Span<T> as fields, and in doing so
also sign up for the associated constraints to be assigned to your
type. For example, if you wanted to write a struct Enumerator for a
Span<T>, that Enumerator would need to store the Span<T> and,
thus, would itself need to be a ref struct, like this:

public ref struct Enumerator
{
 private readonly Span<char> _span;
 private int _index;
 ...
}

Stackalloc initialization of spans. In previous versions of
C#, the result of stackalloc could only be stored into a pointer
local variable. As of C# 7.2, stackalloc can now be used as part of
an expression and can target a span, and that can be done without
using the unsafe keyword. Thus, instead of writing:

Span<byte> bytes;
unsafe
{
 byte* tmp = stackalloc byte[length];
 bytes = new Span<byte>(tmp, length);
}

You can write simply:
Span<byte> bytes = stackalloc byte[length];

This is also extremely useful in situations where you need some
scratch space to perform an operation, but want to avoid allo
cating heap memory for relatively small sizes. Previously you had
two choices:

• �Write two completely different code paths, allocating and oper-
ating over stack-based memory and over heap-based memory.

• �Pin the memory associated with the managed allocation
and then delegate to an implementation also used for the

stack-based memory and written with pointer manipula-
tion in unsafe code.

Now, the same thing can be accomplished without code dupli-
cation, with safe code and with minimal ceremony:

Span<byte> bytes = length <= 128 ? stackalloc byte[length] : new byte[length];
... // Code that operates on the Span<byte>

Span usage validation. Because spans can refer to data that
might be associated with a given stack frame, it can be dangerous
to pass spans around in a way that might enable referring to mem-
ory that’s no longer valid. For example, imagine a method that tried
to do the following:

static Span<char> FormatGuid(Guid guid)
{
 Span<char> chars = stackalloc char[100];
 bool formatted = guid.TryFormat(chars, out int charsWritten, "d");
 Debug.Assert(formatted);
 return chars.Slice(0, charsWritten); // Uh oh
}

Here space is being allocated from the stack and then trying to
return a reference to that space, but the moment you return, that
space will no longer be valid for use. Thankfully the C# compiler
detects such invalid usage with ref structs and fails the compila-
tion with an error:

error CS8352: Cannot use local 'chars' in this context because it may
expose referenced variables outside of their declaration scope

What’s Next?
The types, methods, runtime optimizations, and other elements dis-
cussed here are on track to being included in .NET Core 2.1. After
that, I expect them to make their way into the .NET Framework. The
core types like Span<T>, as well as the new types like Utf8Parser,
are also on track to being made available in a System.Memory.dll
package that’s compatible with .NET Standard 1.1. That will make
the functionality available for existing releases of .NET Framework
and .NET Core, albeit without some of the optimizations imple-
mented when built into to the platform. A preview of this package
is available for you to try out today—simply add a reference to the
System.Memory.dll package from NuGet.

Of course, keep in mind that there can and will be breaking
changes between the current preview version and what’s actually
delivered in a stable release. Such changes will in large part be
due to feedback from developers like you as you experiment with
the feature set. So please do give it a try, and keep an eye on the
github.com/dotnet/coreclr and github.com/dotnet/corefx repositories for
ongoing work. You can also find documentation at aka.ms/ref72.

Ultimately, the success of this feature set relies on developers
trying it out, providing feedback, and building their own libraries
utilizing these types, all with the goal of providing efficient and safe
access to memory in modern .NET programs. We look forward
to hearing from you about your experiences, and even better, to
working with you on GitHub to improve .NET further.	 n

Stephen Toub works on .NET at Microsoft. You can find him on GitHub at
github.com/stephentoub.

Thanks to the following technical experts for reviewing this article:
Krzysztof Cwalina, Eric Erhardt, Ahson Khan, Jan Kotas, Jared Parsons, Marek
Safar, Vladimir Sadov, Joseph Tremoulet, Bill Wagner, Jan Vorlicek, Karel Zikmund

Several features have been
added to the C# language and

compiler to help make Span<T>
a first-class citizen in .NET.

0118msdn_ToubSharp_v6_22-27.indd 27 12/12/17 8:59 AM

http://msdnmagazine.com
http://bit.ly/2zywvyI
http://github.com/dotnet/coreclr
http://github.com/dotnet/corefx
http://aka.ms/ref72
http://github.com/stephentoub

Boston

Austin

Las Vegas

VISUAL STUDIO LIVE! (VSLive!™) is celebrating 25 years as one of the most respected,
longest-standing, independent developer conferences, and we want you to be a part of it.

Join us in 2018 for #VSLive25, as we highlight how far technology has come in 25 years,
while looking toward the future with our unique brand of training on .NET, the Microsoft
Platform and open source technologies in seven great cities across the US.

SUPPORTED BY

magazine

PRODUCED BY

March 12 – 16, 2018
Bally’s Hotel & Casino

April 30 – May 4, 2018
Hyatt Regency Austin

June 10 – 14, 2018
Hyatt Regency Cambridge

Respect the Past.
Code the Future.

Code Like It’s 2018!

Developing Perspective.

Untitled-7 2 10/11/17 1:47 PM

www.vslive.com

Redmond

Orlando

San Diego

Chicago

CONNECT WITH US

linkedin.com – Join the
“Visual Studio Live” group!

facebook.com –
Search “VSLive”

twitter.com/vslive –
@VSLive

vslive.com

#VSLIVE25

August 13 – 17, 2018
Microsoft Headquarters

September 17 – 20, 2018
Renaissance Chicago

Look Back to
Code Forward.

October 8 – 11, 2018
Hilton San Diego Resort

Code Again for
the First Time!

December 2 – 7, 2018
Loews Royal Pacific Resort

Code Odyssey.

2018 DATES ANNOUNCED

Yesterday’s Knowledge;
Tomorrow’s Code!

NEW LOCATION!

Untitled-7 3 10/11/17 1:48 PM

www.vslive.com
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine30

Take a second to think about Excel as a whole—it’s a flexible,
powerful, ubiquitous tool for analyzing data, from my handy little
to-do list spreadsheet, all the way to massive 100MB financial-model
workbooks at the world’s top banks. And underneath all the fancy
features, behind the slick charts and formatting, the real value is
calculation, called “Calc” internally. Calc is what lets you create
relationships between cells: You express complex models by writ-
ing simple formulas to describe the dependency trees between
values (see Figure 1). And then, as soon as you make a change, Calc
updates the dependent values based on those formulas.

Excel provides tons of helpful functions to use in your formulas,
from the essential AVERAGE function (bit.ly/1Tjynwl), to string-anal-
ysis functions like SEARCH for finding substrings (bit.ly/2jhcEuV),
to more complex calculations like the T.TEST statistical function
(bit.ly/2ipowKE). People at work and in school learn Excel functions
to use in formulas, and they interact with them naturally for their
day-to-day calculation needs. So if you want to provide a powerful
capability that Excel doesn’t already have, consider building an Excel
function for that purpose. See Figure 2 for an example: The Contoso
Cryptographers Corp. wants to release a solution that helps sleuths
analyze data in Excel to decode messages. And one of the handy tools
for code breaking is to recognize primes quickly, so Contoso would
love to have an ISPRIME function for the millions of detectives who
already use Excel. Later in this article you’ll see how Contoso builds
this function and the other capabilities it needs for its add-in.

What Can I Build?
Before you start building, consider that not all extensions to Excel
functionality should use Excel formulas. To decide if yours should,
ask yourself this: “Does my function need to change anything aside
from the Excel value that’s being returned?” In other words, does
the function have side effects? In Excel, people don’t expect for-
mulas to change anything except the cell in which they’re entered.
That change might trigger other changes, but those would also be
the result of self-contained formulas without side effects. When
you type “=SUM()” in cell A1, you don’t expect a chart to appear
somewhere on the sheet or a new row to be added underneath or
a number to be changed in a financial database on the Internet,
though you can control all those behaviors as part of a solution
you build, which might contain functions and other capabilities.

The type of solution you should build to create your Excel
function depends on your skills and goals. If you’re a professional
developer, either selling externally like Contoso Cryptographers
or building for people in your own organization, an add-in is the
right tool for data analytics solutions in Excel, as is explained in
the “JavaScript Custom Functions in Excel Add-Ins section.” If
you’re an AI developer or data scientist looking to build intelligent
models for data analysts to use at your company, check out the
“Azure Machine Learning Functions” section later in this article.
And if you don’t have any of those skills, Microsoft will have solu-
tions for you in the future!

JavaScript Custom Functions in Excel Add-Ins
Excel add-ins are tools that professional developers can build to
extend Excel and interact with the data in workbooks (bit.ly/2AUOsZk).
Thousands of add-ins are already available and they all run across
Excel platforms, including Windows, Mac, Excel Online and even
iOS. Anyone familiar with Web technologies will find add-ins easy
to build, because they’re written just like Web pages: Add-ins run
HTML, JavaScript, and CSS, and have the ability to call external
Web servers. Best of all, the add-ins don’t need any code changes to
run on all the different platforms. (Excel also supports other types

O FF ICE

Extend Excel Formulas
for Data Analysis
Michael Saunders

Some of the technologies discussed in this article are in preview;
all information is subject to change.

This article discusses:
•	Excel add-ins

•	JavaScript custom functions in Excel

•	Azure Machine Learning functions in Excel

Technologies discussed:
Excel, JavaScript, Azure Machine Learning

0118msdn_SaundersExcel_v3_30-33.indd 30 12/12/17 9:01 AM

http://bit.ly/1Tjynwl
http://bit.ly/2jhcEuV
http://bit.ly/2ipowKE
http://bit.ly/2AUOsZk

31January 2018msdnmagazine.com

of add-ins, as described at bit.ly/2qsPfLe,
but they can’t run across platforms or be
deployed to the Store.) Figure 3 shows the
key pieces of an add-in. The main piece
is the manifest.xml file, which specifies
the Web location of the rest of the add-in
and other metadata. The rest of the code is
deployed by the developer, just as with any
other Web application.

Add-ins provide lots of useful ways
to extend Excel (see the documenta-
tion at bit.ly/2AV47rw). They can add UI
elements, like ribbon buttons, contex-
tual menu options, and HTML task
panes and dialogs. They can interact
with workbooks via thousands of APIs,
such as the abilities to add and remove
rows, insert and edit charts, and
even apply formatting to cells. And
now, with the new preview release
of JavaScript custom functions, it’s
possible to extend Excel formulas.

Custom functions allow developers to add any JavaScript func-
tion to Excel using an add-in (bit.ly/2AYtNUW). Users can then access
custom functions like any other native function in Excel (such as
AVERAGE). Let’s take a closer look at the Contoso Cryptographers
ISPRIME function to see how it’s written (It’s also possible to check
primality using only built-in Excel functions, but that’s much more
difficult for the person requesting the calculation.):

function isPrime(n) {
 var root = Math.sqrt(n);
 if (n < 2) return false;
 for (var divisor = 2; divisor <= root; divisor++){
 if(n % divisor == 0) return false;
 }
 return true;
}

The function simply checks all possible divisors up to the square
root to determine whether the input is prime—a few lines of
JavaScript. All the actual logic is done already. But there’s more to
write than just the function itself. To be an effective extension point,
custom functions must look and feel just like native ones. And native
functions have a bunch of customized information. Look at Figure
4 for an example with the Contoso Crypographers ISPRIME func-
tion: In addition to the name of the function itself, Excel displays a
helpful description to clarify the purpose of the function.

You can see another example in Figure 5. After CONTOSO.IS-
PRIME is selected, Excel shows the name of the parameter (in this
case, n) to make it easier to pick the right inputs.

Both of these pieces of information and much more are provided
by the developer in the JavaScript definition of the function’s meta-
data, as you can see in Figure 5.

You can see that the description is specified as a string and so
is the name of each parameter. I won’t discuss all the metadata
here, but you can see the documentation for more info. If you’re
familiar with the add-in model, you might be wondering why
this information is provided in JavaScript rather than hardcoded
statically somewhere, like in the manifest.xml file. The reason is

flexibility. In Contoso’s case, the cryptogra-
phy functions are defined and well-known
beforehand. But sometimes you might want
the ability to enable different functions in
different situations.

Contoso Cryptographers love the sim-
plicity of their ISPRIME function, but
their next goal is a little more difficult:
They want to build a function to generate

random numbers for encrypting text.
Excel has an excellent RAND func-
tion, but the problem is that RAND
isn’t ideal for encryption because its
values are pseudorandom, generated
procedurally. In contrast, numbers
generated by random.org are safe
to use for this purpose—they’re
generated from atmospheric noise.
Of course, it’s no good to hardcode
random numbers; instead, Contoso
must design a function that can call
random.org to fetch random num-

bers via HTTP request. Thankfully, custom functions make it
easy to include Web requests. Here’s what Contoso’s asynchronous
RANDOM function looks like:

function getRandom(min, max) {
 return new OfficeExtension.Promise(function(setResult, setError){
 sendRandomOrgHTTP(min, max, function(result){
 if(result.number) setResult(number);
 else setError(result.error);
 });
 });
}

The key difference between this function and ISPRIME is that
RANDOM is asynchronous: instead of returning a value to Excel,
it immediately returns a JavaScript promise, then makes an XML
HttpRequest (not visible in the function—it’s in the sendRandom
OrgHTTP method) to the random.org service. Then, once the Web
service has responded, Contoso resolves the promise with the ran-
dom.org number to write it to the cell. Bringing Web data into Excel
is one of the key reasons companies want to extend Excel func-
tions, so Microsoft expects asynchronous functions to be popular.

One common aspect of all asynchronous functions is that they
take some amount of time to return their result, so Excel shows a
#GETTING_DATA message in the cell while it waits for the func-
tion to be resolved (see Figure 6).

In this case, the HTTP request can complete quickly, in around
a tenth of a second. But if necessary, the function can make many
calls and take longer than that to evaluate. For JavaScript custom
functions, resolving the value in JavaScript causes it to be displayed

Figure 1 Calc Lets You Create Relationships
Between Cells

Figure 2 The Contoso Function to Identify
Prime Numbers

Figure 3 The Key Pieces of an Add-In

manifest.xml
Office Add-In

Your Own Web App
(with Office.js)

HTML

0118msdn_SaundersExcel_v3_30-33.indd 31 12/12/17 9:01 AM

http://msdnmagazine.com
http://bit.ly/2AV47rw
http://bit.ly/2AYtNUW
http://bit.ly/2qsPfLe

msdn magazine32 Office

immediately in the cell. Figure 7 shows an Excel view of the same
RANDOM function after the value is returned.

Of course, an add-in using custom functions could have many
other features, as well: Contoso Cryptographers might want to
create a task pane and a ribbon tab to give their customers easy
access to their custom functions; settings for how they behave;
and guidance on how to use them. Perhaps the JavaScript API
could even be used to let customers encrypt an entire worksheet
of data with a click of a button. Whatever they decide, they can be
confident that the entire add-in will run across Excel platforms
without code changes.

There are two main ways to deploy an add-in containing these
JavaScript custom functions, depending on the audience. The public
Office Store (bit.ly/2A70L5o) is available to anyone who has Excel—
there’s even a button to browse the Store on the Excel ribbon. The
Store supports both free and paid add-ins, and requires submis-
sion and validation through Microsoft. However, Contoso Cryp-
tographers Corp. deploys directly to its small business customers
so they don’t have to click anything to install it. Instead, it provides
each customer with the manifest file. Then an IT admin can choose
which users get access via the O365 admin center (see the interface
in Figure 8). Those users get the add-in installed automatically.

Hopefully you’ve been inspired by the resourceful Contoso
Cryptographers to try writing your own custom functions (use
the guide and samples at aka.ms/customfunctions). Next, I’ll explore
the other new way to extend Excel formulas.

Azure Machine Learning Functions
The second type of extensible function Microsoft has announced
is Azure Machine Learning functions (abbreviated Azure ML). In
contrast to JavaScript custom functions, Azure ML functions are
created by AI developers (often data scientists and other experts)
for analysts in their organization to use. As a result, there’s no need
to create an add-in package to deploy an Azure ML function.

The Azure ML function itself is based on a service that calculates
or predicts values based on a machine learning (ML) model. Once
the model is built, the creators can enable it for anyone they choose.
Then, every time someone wants to run the function, they simply
type in a cell, just like for any other Excel function. The function
calls a live Web service on the company’s Azure subscription and
returns the result asynchronously.

For example, a marketing analyst at a retailer might want to pre-
dict demand for new products in various geographies. The analyst
has some data on that product and the target markets in Excel. The
goal is to get a simple function that lets the analyst forecast demand
in each market without ever leaving Excel. Figure 9 shows a sam-
ple spreadsheet with this type of data.

Excel.Script.CustomFunctions["CONTOSO"]["ISPRIME"] = {
 call: isPrime,
 description: "Determines whether the input is prime",
 helpUrl: "https://example.com/help.html",
 result: {
 resultType: Excel.CustomFunctionValueType.boolean,
 resultDimensionality: Excel.CustomFunctionDimensionality.scalar,
 },
 parameters: [{
 name: "n",
 description: "the number to be evaluated",
 valueType: Excel.CustomFunctionValueType.number,
 valueDimensionality: Excel.CustomFunctionDimensionality.scalar,
 }],
 options: { batched: false, streaming: false }
};

Figure 5 The Contoso ISPRIME Function

Figure 4 Custom Functions and Native Functions
Automatically Complete While You Type Figure 6 Waiting for an Asynchronous Function to Return

Figure 7 An Excel View of the RANDOM Function After
the Value Is Returned

Figure 8 Deploying a Custom Function to an Organization

0118msdn_SaundersExcel_v3_30-33.indd 32 12/12/17 9:01 AM

http://bit.ly/2A70L5o
http://aka.ms/customfunctions

INTENSE TRAINING FOR DEVELOPERS,
ENGINEERS, PROGRAMMERS AND ARCHITECTS:

➤ Visual Studio

➤ .NET Core

➤ Xamarin

➤ Software Practices

➤ Angular JS

➤ ASP.NET / Web Server

➤ Database and Analytics

➤ ALM / DevOps

➤ Cloud Computing

➤ UWP/Windows

LAS VEGAS
MAR 11-16 2018
BALLY’S, LAS VEGAS, NV

VSLive! 1998 VSLive! 2017

vslive.com/vegas

Register by January 19
and Save $400!*
Use promo code VSLTIPIN
*Available on 3, 5, and 6 day packages only.

➤ BACK BY POPULAR DEMAND:
Hands-On Labs!
Sunday, March 11.
Starting at $645 thru January 19.

RESPECT THE PAST; CODE THE FUTURE!

0118msdn_VSLive_Insert.indd 1 12/6/17 10:56 AM

www.vslive.com/vegas

vslive.com/vegas

CONNECT WITH US twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

SUPPORTED BY

magazine

EVENT PARTNER PRODUCED BY

2018

Las Vegas
March 11 – 16, 2018
Bally’s Hotel & Casino

Respect the Past.
Code the Future.

Austin
April 30 – May 4, 2018
Hyatt Regency Austin

Code Like It’s 2018!

Chicago
September 17 – 20, 2018
Renaissance Chicago

Look Back to
Code Forward.

Boston
June 10 – 14, 2018
Hyatt Regency Cambridge

Developing
Perspective.

San Diego
October 7 – 11, 2018
Hilton San Diego Resort

Code Again for
the First Time!

Redmond
August 13 – 17, 2018
Microsoft Headquarters

Yesterday’s Knowledge;
Tomorrow’s Code!

Orlando
December 2 – 7, 2018
Loews Royal Pacific Resort

Code Odyssey.

Help Us Celebrate #VSLive25! Which Location Will You Attend?

0118msdn_VSLive_Insert.indd 2 12/6/17 10:56 AM

www.vslive.com/vegas
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

33January 2018msdnmagazine.com

An AI developer at that organization uses Azure ML services
(bit.ly/2nwa0WP) to create the model: She starts by preparing training
data, typically from an external database, to build an ML experi-
ment based on historical sales for new products. Azure Machine
Learning Workbench is a tool that simplifies the data preparation

and lets the data scientist write Python code to train and evalu-
ate models. Figure 10 is the Run Dashboard view in Azure ML
Workbench, showing statistics on an experiment.

Once the model is ready, it can be deployed as a Web service in the
organization’s Azure subscription, with permissions for the right set

of users to access it. Instead of defin-
ing the metadata in JavaScript that
runs locally, the metadata is defined
in a Swagger (RESTful API) format
that’s created automatically along
with the deployed service. All that’s
required for the service to appear as
a function in Excel is that the analyst
in Excel has permission to access
it. Figure 11 shows the deployed
functions appearing for the data
analysts in Excel. The analysts can
then run the function normally. Just
as with the asynchronous JavaScript
custom functions, the cell shows a
#GETTING_DATA message while
the service computes the result.

The Future of Extensible
Functions in Excel
I hope you’ll try the technology
previews for extensible functions
in Excel—JavaScript custom func-
tions and add-ins if you’re a software
or services vendor, and Azure ML
functions if you’re an AI developer
or data scientist. Microsoft is lis-
tening carefully to all the feedback
during the preview (post ideas to
the UserVoice page at bit.ly/2jRJQsu),
so in addition to getting a head
start, you’ll also have the oppor-
tunity to shape the final released
product. There are many more
improvements coming to both of
these function types, and some
entirely new ones, so stay posted
for future announcements!	 n

Michael Saunders is a program manager
on the Office team, where he builds Excel
features for developers. He’s originally from
Toronto, Canada, and he studied Manage-
ment and Materials Science Engineering at
the University of Pennsylvania and Whar-
ton. In his spare time, Saunders sings with
the Seattle Esoterics and develops add-ins.

Thanks to the following Microsoft
technical experts for reviewing this
article: Yina Arenas, Ashvini Sharma,
Sandhya Vankamamidi

Figure 9 Sample Product and Market Data That Will Be Analyzed with an Azure ML Function

Figure 10 Azure Machine Learning Workbench

Figure 11 The Deployed Functions Showing in Excel

0118msdn_SaundersExcel_v3_30-33.indd 33 12/12/17 9:01 AM

http://msdnmagazine.com
http://bit.ly/2nwa0WP
http://bit.ly/2jRJQsu

msdn magazine34

If you think of your organization as an API, what would it
look like?

You’d probably start with the people—the heart of an organiza­
tion—and the kinds of roles and functions they fulfill. Such people
are frequently grouped into defined and virtual teams that accom­
plish tasks and projects. You’d layer on resources, including where
people work and the tools they use to get work done. You’d then
add processes and work activities—perhaps these are methods
in the API? Though “widgetMarketingTeam.runCampaign()” is
perhaps wildly overly simplistic, nevertheless, with an API to your
organization, you’d get great insights into how your organization

is functioning and could transform productivity by building more
efficient processes and tools.

The key is making every resource available consistently, and inter­
connected logically, so you can craft comprehensive processes to
fit the way individuals and teams want to work. The more APIs you
can bring together and connect, the more useful by far the net set
of products you build could be—greater than the sum of its parts.

For this, we offer Microsoft Graph—an API that spans key data
sets within your organization and allows you to pull together
everything you need to transform how work is performed. More­
over, Microsoft Graph works with consumer services, such as
OneDrive and Mail (Outlook.com), empowering you to transform
personal productivity, as well.

Solving the Problem of API Sprawl
Across an organization, the set of software systems in use can vary
wildly. For developers, each presents a unique structure, typically
with a distinct set of APIs, authentication requirements and style
of interaction. Frequently, a major challenge of software projects
is simply bridging these different systems to provide a higher level
of insight and can include abstracting out different APIs and mas­
tering individual authentication schemes.

Historically, individual APIs from different product teams—
at Microsoft, in my case—would work differently and require
cross-product integration. Even five years ago, the process of
getting a user’s complete profile and photo would require callouts

O FF ICE

Build the API to Your
Organization with
Microsoft Graph and
Azure Functions
Mike Ammerlaan

This article discusses Azure Functions Binding Extensions, which is
in public preview. All information is subject to change.

This article discusses:
•	Using Microsoft Graph to unify data and authentication across

organizational systems

•	Building processes and integrations in Microsoft Graph using
Azure Functions

•	Creating a task using Azure Functions

•	Processing files in OneDrive

Technologies discussed:
Microsoft Graph, Azure Functions, Azure Functions Bindings
Extensions for Microsoft Graph, Cognitive Services Speech API

0118msdn_AmmerlaanGraph_v3_34-41.indd 34 12/12/17 8:50 AM

35January 2018msdnmagazine.com

to both Exchange APIs (to get information about a person) and
SharePoint APIs (to get a photo from a user’s managed profile).
Each had their own authentication, API scheme, and differing
requirements. What if you then wanted to get the information
about a person’s manager? That would involve querying a third
system to get organizational hierarchy. These operations were all
possible to pull together, but more complex than they needed to be.

Microsoft Graph was born out of a desire to solve this problem.
By unifying data and authentication, and making systems consis­
tent, the net set of APIs becomes much easier and more practical
to use. Microsoft Graph pulls together diverse systems from across
your organization, representing key facets and functions in a com­
pany. Since its launch two years ago, Microsoft Graph has continued
to grow in breadth of both functionality and capability, to where
it really can serve as a foundational API for your organization.

At the core of Microsoft Graph is the set of users—typically all
employees with an account in an organization. Simplified, central­
ized groups are an emerging concept in Microsoft Graph, generally
starting with a list of users and other security groups. Groups can
have an associated set of resources, like a Microsoft Teams chat-
based workspace, a Planner task board, and a SharePoint site with
document libraries and files. From there, various tools of work are
represented for users and groups, including files via the Drive API,
tasks via the Planner API, incoming mail for both users and groups,
contacts, calendar, and more, as shown in Figure 1.

Over time, new capabilities have been added across the APIs in
Microsoft Graph. A new ability to persist custom metadata along
with items in Microsoft Graph gives you the ability to deeply cus­
tomize these items. Now a group is no longer just a group—with
additional metadata describing topic, instructor and timing, a
group could represent a class in an educational institution. You
could use this metadata to then perform queries—for example, find
all groups that represent science classes. Alternatively, you could
connect your systems into Microsoft Graph by adding identifiers
from your system to the related entities within Microsoft Graph.

Microsoft Graph also goes beyond providing create, read,
update and delete (CRUD) APIs for core objects. A major feature
is a layer of insights that are generated behind the scenes as users
work. For example, though Graph contains a full organizational
hierarchy and collection of groups, these may not always form
the best representation of how teams work. Through an analysis of
work, you can get a list of the most closely related people (virtual
teams) and files with which a user might be connected. In addition,
common utilities, such as those for finding an available meeting
time among a set of users, are made available as methods.

Azure Functions
Microsoft Graph exists to be used and customized in broader sys­
tems and processes. As a simple REST API and coupled with a wide
array of SDKs, Microsoft Graph is designed to be straightforward to
work with. A natural choice for building processes and integrations
in Microsoft Graph is Azure Functions (functions.azure.com), which
lets you add pinpointed blocks of code where you need it while
only paying incrementally for code as it’s used. Azure Functions
supports development across languages, including C# and Node.js.

Recently, a new set of integrations with Azure Functions makes
it easier to connect to Microsoft Graph. Azure Functions Binding
Extensions, now available in preview with the Azure Functions 2.0
runtime, automates some of the common tasks of working with
Microsoft Graph, including authentication and working with the
mechanics of webhooks.

Let’s take a look at an example to get started in working with
Microsoft Graph.

Creating Tasks via Azure Functions
Imagine you’d like to have managers review and approve an action
undertaken by a member of their team. User tasks are one way
to ask users to perform an action—to convert and track human
action. In this case, I want to implement a simple Web service that
will create a task assigned to a user’s manager.

The first stop in any Microsoft Graph project is usually the
Graph Explorer. Graph Explorer is an application Web site that
lets you quickly model Microsoft Graph calls, explore their
results, and fully conceive of all you might do. Available from
developer.microsoft.com/graph, the Graph Explorer lets you either use a
read-only demo tenancy, or sign into your own tenancy. You can
sign in with your organization account and directly access your
own data. We recommend using a developer tenancy, available
from the Office Developer Program at dev.office.com/devprogram. This
will give you a separate tenancy where you can feel free to exper­
iment with your development.

In this case, you can enter two simple URLs to see the kind of
calls you’ll be making in this sample. First, you want to check “get a
user’s manager,” which you can see in Graph Explorer by selecting
the “GET my manager” sample, shown in Figure 2. The URL
behind this is shown in the Run Query field.

The second part of the operation is to create a Planner Task.
Within Graph Explorer, you can expand the set of samples to add
samples of Planner tasks. Within this sample set, you can see the
operation for creating a Planner Task (a POST to https://graph.mi­
crosoft.com/v1.0/planner/tasks).

Figure 1 Productivity APIs of Microsoft Graph

Planner & To-Dos

Tasks

Outlook

Calendars

Outlook

Contacts Insights

Azure AD

People and Groups

Azure AD

Organization

Teams, Outlook & Groups

Conversations

Office Apps & OneDrive

Files, Content and Notes

Excel

Excel Models

SharePoint

Sites and Lists

0118msdn_AmmerlaanGraph_v3_34-41.indd 35 12/12/17 8:50 AM

http://msdnmagazine.com
http://functions.azure.com
http://developer.microsoft.com/graph
http://dev.office.com/devprogram

Untitled-4 2 9/7/17 1:32 PM

http://www.textcontrol.com

Untitled-4 3 9/7/17 1:32 PM

http://www.textcontrol.com

msdn magazine38 Office

Now that you understand the Web service requests involved,
you can build a function using Azure Functions.

To get started, create a new Azure Functions application. In gen­
eral, you’ll want to follow the instructions at aka.ms/azfnmsgraph to
get this accomplished. In brief, because the new Azure Functions
Binding Extensions capability is in Preview, you’ll need to switch
your Azure Functions application over to the 2.0 preview (“beta”)
runtime. You’ll also need to install the Microsoft Graph Extension,
as well as configure App Service Authentication.

As you configure the Microsoft Graph Application Registration,
for this sample you’ll need to add some further permissions to sup­
port reading manager information and tasks, including:

• �CRUD user tasks and projects (Tasks.ReadWrite)
• �View users’ basic profile (profile)
• �Read and Write All Groups (Group.ReadWrite.All)
• �Read all users’ basic profile (User.ReadBasic.All)

You’ll want to leverage Azure Functions Binding Extensions for
Microsoft Graph to handle the authentication and ensure you have an
authenticated access token by which you can access Microsoft Graph
APIs. To do this, you’ll create a standard HTTP C# trigger. Under
Integrate, select the Advanced Editor and use the bindings shown

in Figure 3. This will require that
the user sign in, authenticate and
approve your application before it
can be used.

The code for the function is
shown in Figure 4. Note that you’ll
need to configure an environment
variable for the function applica­
tion called PlanId, which has the
identifier of the Planner Plan you
wish to use for your tasks. This can
be done via Application Settings
for the function application.

This sample shows how you can
pull together disparate sets of data
(a user’s manager and Planner tasks
in this case) in one piece of code

with one authentication token. Creating and assigning tasks is a
common way to drive activities across teams, so the ability to create
tasks on the fly and leverage existing Planner experiences is quite
useful. It’s not quite “widgetMarketingTeam.launchCampaign()”—
but at least you can see how you’d create the starter set of tasks that
would get the team off to a focused, structured start.

Processing Files in OneDrive
Another task you can perform is to process files that exist on a user’s
OneDrive. In this instance, you take advantage of Azure Functions
Binding Extensions for Microsoft Graph to do the work of preparing
a file for use. You then pass it into Cognitive Services APIs for doing
voice recognition. This is an example of data processing that can be a
useful way to get more value out of files across OneDrive and SharePoint.

To get started, you follow some of the same steps as in the pre­
vious example, including setting up a Function App and an Azure
Active Directory registration. Note that the Azure Active Directory
application registration that you use for this sample will need to
have the “Read all files that user can access” (Files.Read.All) per­
mission. You’ll also need to have a Cognitive Services Speech API
key, which you can obtain from aka.ms/tryspeechapi.

As before, start with Azure Functions Binding Extensions and
set up a new HTTP C# trigger. Under the Integrate tab of your
function, use the binding markup shown in Figure 5 to connect
your function to a binding extension. In this case, the binding
extension ties the myOneDriveFile parameter in your Azure func­
tion to the onedrive binding extension.

Now, it’s time for the code, which is shown in Figure 6.
With this function in place, after a user has signed into their Azure

function, they can specify a filename parameter. If a file has a .WAV
filename and contains English content within it, this will get tran­
scribed into English text. Because this is implemented with Azure
Functions, your function will typically incur cost only as it’s called, pro­
viding a flexible way to extend the data you have in Microsoft Graph.

Azure Functions + Microsoft Graph
The two samples I presented here show how you can build both
human and technical processes on top of data within Microsoft

{
 "bindings": [
 {
 "name": "req",
 "type": "httpTrigger",
 "direction": "in"
 },
 {
 "type": "token",
 "direction": "in",
 "name": "accessToken",
 "resource": "https://graph.microsoft.com",
 "identity": "userFromRequest"
 },
 {
 "name": "$return",
 "type": "http",
 "direction": "out"
 }
],
 "disabled": false
}

Figure 3 Creating an HTTP Trigger to Handle Authentication

Figure 2 Results of Selecting GET my manager

0118msdn_AmmerlaanGraph_v3_34-41.indd 38 12/12/17 8:50 AM

http://aka.ms/azfnmsgraph
http://aka.ms/tryspeechapi

Untitled-9 1 12/8/17 2:43 PM

http://www.docuvieware.com

msdn magazine40 Office

Figure 4 Posting a Task Assigned to a User’s Manager Azure Functions Source

#r "Newtonsoft.Json"

using System.Net;
using System.Threading.Tasks;
using System.Configuration;
using System.Net.Mail;
using System.IO;
using System.Web;
using System.Text;
using Newtonsoft.Json.Linq;

public static HttpResponseMessage Run(HttpRequestMessage req, string
accessToken, TraceWriter log)
{
 log.Info("Processing incoming task creation requests.");

 // Retrieve data from query string
 // Expected format is taskTitle=task text&taskBucket=bucket
 // title&taskPriority=alert
 var values = HttpUtility.ParseQueryString(req.RequestUri.Query);

 string taskTitle = values["taskTitle"];
 string taskBucket = values["taskBucket"];
 string taskPriority = values["taskPriority"];

 if (String.IsNullOrEmpty(taskTitle))
 {
 log.Info("Incomplete request received - no title.");
 return new HttpResponseMessage(HttpStatusCode.BadRequest);
 }

 string planId = System.Environment.GetEnvironmentVariable("PlanId");

 // Retrieve the incoming users' managers ID
 string managerJson = GetJson(
 "https://graph.microsoft.com/v1.0/me/manager/", accessToken, log);
 dynamic manager = JObject.Parse(managerJson);
 string managerId = manager.id;

 string appliedCategories = "{}";

 if (taskPriority == "alert" || taskPriority == "1")
 {
 appliedCategories = "{ \"category1\": true }";
 }
 else
 {
 appliedCategories = "{ \"category2\": true }";
 }

 string now = DateTime.UtcNow.ToString("yyyy-MM-ddTHH\\:mm\\:ss.fffffffzzz");
 string due = DateTime.UtcNow.AddDays(5).ToString(
 "yyyy-MM-ddTHH\\:mm\\:ss.fffffffzzz");
 string bucketId = "";

 // If the incoming request wants to place a task in a bucket,
 // find the bucket ID to add it to
 if (!String.IsNullOrEmpty(taskBucket))
 {
 // Retrieve a list of planner buckets so that you can match
 // the task to a bucket, where possible
 string bucketsJson = GetJson(
 "https://graph.microsoft.com/v1.0/planner/plans/" + planId +
 "/buckets", accessToken, log);

 if (!String.IsNullOrEmpty(bucketsJson))
 {
 dynamic existingBuckets = JObject.Parse(bucketsJson);

 taskBucket = taskBucket.ToLower();

 foreach (var bucket in existingBuckets.value)
 {
 var existingBucketTitle = bucket.name.ToString().ToLower();

 if (taskBucket.IndexOf(existingBucketTitle) >= 0)
 {
 bucketId = ", \"bucketId\": \"" + bucket.id.ToString() + "\"";
 }
 }
 }

 }

 string jsonOutput = String.Format(" {{ \"planId\": \"{0}\",
\"title\": \"{1}\", \"orderHint\": \" !\", \"startDateTime\": \"{2}\",
\"dueDateTime\": \"{6}\", \"appliedCategories\": {3}, \"assignments\":
{{ \"{4}\": {{ \"@odata.type\": \"#microsoft.graph.plannerAssignment\",
\"orderHint\": \" !\" }} }}{5} }}",
 planId, taskTitle, now, appliedCategories, managerId, bucketId, due);

 log.Info("Creating new task: " + jsonOutput);
 PostJson("https://graph.microsoft.com/v1.0/planner/tasks",
 jsonOutput, accessToken, log);

 return new HttpResponseMessage(HttpStatusCode.OK);
}

private static string GetJson(string url, string token, TraceWriter log)
{
 HttpWebRequest hwr = (HttpWebRequest)WebRequest.CreateHttp(url);

 log.Info("Getting Json from endpoint '" + url + "'");

 hwr.Headers.Add("Authorization", "Bearer " + token);
 hwr.ContentType = "application/json";

 WebResponse response = null;

 try
 {
 response = hwr.GetResponse();
 using (Stream stream = response.GetResponseStream())
 {
 using (StreamReader sr = new StreamReader(stream))
 {
 return sr.ReadToEnd();
 }
 }
 }
 catch (Exception e)
 {
 log.Info("Error: " + e.Message);
 }

 return null;
}

private static string PostJson(string url, string body, string token, TraceWriter log)
{
 HttpWebRequest hwr = (HttpWebRequest)WebRequest.CreateHttp(url);

 log.Info("Posting to endpoint " + url);
 hwr.Method = "POST";
 hwr.Headers.Add("Authorization", "Bearer " + token);
 hwr.ContentType = "application/json";

 var postData = Encoding.UTF8.GetBytes(body.ToString());

 using (var stream = hwr.GetRequestStream())
 {
 stream.Write(postData, 0, postData.Length);
 }

 WebResponse response = null;

 try
 {
 response = hwr.GetResponse();
 using (Stream stream = response.GetResponseStream())
 {
 using (StreamReader sr = new StreamReader(stream))
 {
 return sr.ReadToEnd();
 }
 }
 }
 catch (Exception e)
 {
 log.Info("Error: " + e.Message);
 }

 return null;
}

0118msdn_AmmerlaanGraph_v3_34-41.indd 40 12/12/17 8:50 AM

41January 2018msdnmagazine.com

Graph. Combined with the breadth of coverage of Microsoft Graph
and the ability to cross workloads (for example, organizational
hierarchy and tasks, as was the case with the task sample in this
article), you can build and add value across your entire organiza­
tion. Combining Microsoft Graph and Azure Functions allows
you to build out the full API to your organization, and transform
productivity for all. Get started in building solutions for your
organization by visiting developer.microsoft.com/graph, and working
with Azure Functions at functions.azure.com.	 n

Mike Ammerlaan is a director of product marketing on the Microsoft Office Eco-
system team, helping people build engaging solutions with Office 365. Prior to this,
he worked at Microsoft as a program manager for 18 years, developing products
such as SharePoint, Excel, Yammer, Bing Maps and Combat Flight Simulator.

Thanks to the following Microsoft technical experts for reviewing this article:
Ryan Gregg, Matthew Henderson and Dan Silver

Figure 6 Transcribing an Audio File from One Drive

#r "Newtonsoft.Json"

using System.Net;
using System.Text;
using System.Configuration;
using Newtonsoft.Json.Linq;

public static async Task<HttpResponseMessage> Run(HttpRequestMessage req,
 Stream myOneDriveFile, TraceWriter log)
{
 // Download the contents of the audio file
 log.Info("Downloading audio file contents...");
 byte[] audioBytes;

 audioBytes = StreamToBytes(myOneDriveFile);

 // Transcribe the file using cognitive services APIs
 log.Info($"Retrieving the cognitive services access token...");
 var accessToken =
 System.Environment.GetEnvironmentVariable("SpeechApiKey");

 var bingAuthToken = await FetchCognitiveAccessTokenAsync(accessToken);

 log.Info($"Transcribing the file...");
 var transcriptionValue = await RequestTranscriptionAsync(
 audioBytes, "en-us", bingAuthToken, log);

 HttpResponseMessage hrm = new HttpResponseMessage(HttpStatusCode.OK);

 if (null != transcriptionValue)
 {
 hrm.Content = new StringContent(transcriptionValue, Encoding.UTF8, "text/html");
 }
 else
 {
 hrm.Content = new StringContent("Content could not be transcribed.");
 }

 return hrm;
}

private static async Task<string> RequestTranscriptionAsync(byte[] audioBytes,
 string languageCode, string authToken, TraceWriter log)
{
 string conversation_url = $"https://speech.platform.bing.com/speech/
recognition/conversation/cognitiveservices/v1?language={languageCode}";
 string dictation_url = $"https://speech.platform.bing.com/speech/
recognition/dictation/cognitiveservices/v1?language={languageCode}";

 HttpResponseMessage response = null;
 string responseJson = "default";

 try
 {

 response = await PostAudioRequestAsync(conversation_url, audioBytes, authToken);
 responseJson = await response.Content.ReadAsStringAsync();
 JObject data = JObject.Parse(responseJson);
 return data["DisplayText"].ToString();
 }
 catch (Exception ex)
 {
 log.Error($"Unexpected response from transcription service A: {ex.Message} |" +
 responseJson + "|" + response.StatusCode + "|" +
 response.Headers.ToString() +"|");
 return null;
 }
}

private static async Task<HttpResponseMessage> PostAudioRequestAsync(
 string url, byte[] bodyContents, string authToken)
{
 var payload = new ByteArrayContent(bodyContents);
 HttpResponseMessage response;

 using (var client = new HttpClient())
 {
 client.DefaultRequestHeaders.Add("Authorization", "Bearer " + authToken);
 payload.Headers.TryAddWithoutValidation("content-type", "audio/wav");
 response = await client.PostAsync(url, payload);
 }

 return response;
}

private static byte[] StreamToBytes(Stream stream)
{
 using (MemoryStream ms = new MemoryStream())
 {
 stream.CopyTo(ms);
 return ms.ToArray();
 }
}

private static async Task<string> FetchCognitiveAccessTokenAsync(
 string subscriptionKey)
{
 string fetchUri = "https://api.cognitive.microsoft.com/sts/v1.0";

 using (var client = new HttpClient())
 {
 client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key", subscriptionKey);
 UriBuilder uriBuilder = new UriBuilder(fetchUri);
 uriBuilder.Path += "/issueToken";

 var response = await client.PostAsync(uriBuilder.Uri.AbsoluteUri, null);
 return await response.Content.ReadAsStringAsync();
 }
}

{
 "bindings": [
 {
 "name": "req",
 "type": "httpTrigger",
 "direction": "in"
 },
 {
 "name": "myOneDriveFile",
 "type": "onedrive",
 "direction": "in",
 "path": "{query.filename}",
 "identity": "userFromRequest",
 },
 {
 "name": "$return",
 "type": "http",
 "direction": "out"
 }
],
 "disabled": false
}

Figure 5 Setting Up a New Trigger for Getting a File on OneDrive

0118msdn_AmmerlaanGraph_v3_34-41.indd 41 12/12/17 8:50 AM

http://msdnmagazine.com
http://developer.microsoft.com/graph
http://functions.azure.com

SUPPORTED BY

magazine

PRODUCED BY

VSLive! 1998 VSLive! 2017

March 11 – 16, 2018
Bally’s Hotel & Casino

Respect the Past. Code the Future.
Visual Studio Live! (VSLive!™) Las Vegas, returns to the strip,
March 11 – 16, 2018. During this intense week of developer training,
you can sharpen your skills in everything from ASP.NET to Xamarin.

Plus, celebrate 25 years of coding innovation as we take a fun
look back at technology and training since 1993. Experience the
education, knowledge-share and networking at #VSLive25.

Untitled-3 2 12/4/17 1:07 PM

www.vslive.com/lasvegasmsdn

vslive.com/lasvegasmsdnCONNECT WITH US

linkedin.com – Join the
“Visual Studio Live” group!

facebook.com –
Search “VSLive”

twitter.com/vslive –
@VSLive

VS2017/.NET Angular/JavaScript ASP.NET Core Xamarin Azure / Cloud

Hands-On Labs Software Practices ALM / DevOps SQL Server 2017 UWP (Windows)

DEVELOPMENT TOPICS INCLUDE:

Who Should Attend and Why
We’ve been around since 1993. What’s our

secret? YOU! Since our fi rst conference (VBITS/

VSLive!/Visual Studio Live!), tens of thousands of

developers, software architects, programmers,

engineers, designers and more have trusted us

year-in-and-year-out for unbiased and cutting-

edge education on the Microsoft Platform.

Register to code with us today!
Register by January 19 and Save $400!
Use Promo Code VSLJAN4

Untitled-3 3 12/4/17 1:07 PM

www.vslive.com/lasvegasmsdn
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

AGENDA AT-A-GLANCE

Use promo code VSLDEC4

START TIME END TIME Full Day Hands-On Labs: Sunday, March 11, 2018 (Separate entry fee required) Full Day Hands-On Labs: Sunday, March 11, 2018 (Separate entry fee required)

8:00 AM 9:00 AM Pre-Conference Hands-On Lab Registration - Coffee and Morning Pastries Pre-Conference Hands-On Lab Registration - Coffee and Morning Pastries

9:00 AM 6:00 PM HOL01 Full Day Hands-On Lab: Modern Security Architecture for ASP.NET Core (Part 1)
- Brock Allen

HOL02 Full Day Hands-On Lab: From 0-60 in a
Day with Xamarin and Xamarin.Forms

- Roy Cornelissen & Marcel de Vries
HOL03 Full Day Hands-On Lab: Busy Developer’s

HOL on Angular - Ted Neward

4:00 PM 6:00 PM Conference Registration Open Conference Registration Open

START TIME END TIME Pre-Conference Workshops: Monday, March 12, 2018 (Separate entry fee required) Pre-Conference Workshops: Monday, March 12, 2018 (Separate entry fee required)

7:30 AM 9:00 AM Pre-Conference Workshop Registration - Coffee and Morning Pastries Pre-Conference Workshop Registration - Coffee and Morning Pastries

9:00 AM 6:00 PM HOL01 Full Day Hands-On Lab: Modern Security Architecture for ASP.NET Core (Part 2)
- Brock Allen

M02 Workshop: Developer Dive into SQL Server 2016
- Leonard Lobel

M03 Workshop: Add Intelligence to Your Solutions with
AI, Bots, and More - Brian Randell

7:00 PM 9:00 PM Dine-A-Round Dine-A-Round

START TIME END TIME Day 1: Tuesday, March 13, 2018 Day 1: Tuesday, March 13, 2018
7:00 AM 8:00 AM Registration - Coffee and Morning Pastries Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM T01 Go Serverless with Azure Functions
- Eric D. Boyd

T02 Getting Ready to Write Mobile
Applications with Xamarin - Kevin Ford

T03 Database Development with SQL Server Data Tools
- Leonard Lobel

T04 What’s New in Visual Studio 2017 for C# Developers
- Kasey Uhlenhuth

9:30 AM 10:45 AM T05 Angular 101 - Deborah Kurata T06 Lessons Learned from Real World
Xamarin.Forms Projects - Nick Landry

T07 Introduction to Azure Cosmos DB
- Leonard Lobel

T08 Using Visual Studio Mobile Center to Accelerate
Mobile Development - Kevin Ford

11:00 AM 12:00 PM KEYNOTE: .NET Everywhere and for Everyone - James Montemagno, Principal Program Manager – Xamarin, Microsoft
12:00 PM 1:00 PM Lunch Lunch

1:00 PM 1:30 PM Dessert Break - Visit Exhibitors Dessert Break - Visit Exhibitors

1:30 PM 2:45 PM T09 Busy Developer’s Guide to Chrome
Development - Ted Neward

T10 Works On My Machine… Docker for
Developers - Chris Klug

T11 DevOps for the SQL Server Database
- Brian Randell T12 To Be Announced

3:00 PM 4:15 PM T13 Angular Component Communication
- Deborah Kurata

T14 Customizing Your UI for Mobile Devices:
Techniques to Create a Great User Experience

- Laurent Bugnion
T15 PowerShell for Developers

- Brian Randell T16 To Be Announced

4:15 PM 5:30 PM Welcome Reception Welcome Reception

START TIME END TIME Day 2: Wednesday, March 14, 2018 Day 2: Wednesday, March 14, 2018
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM
W01 The Whirlwind Tour of Authentication

and Authorization with ASP.NET Core
- Chris Klug

W02 Building Mixed Reality Experiences
for HoloLens & Immersive Headsets in Unity

- Nick Landry
W03 Using Feature Toggles to Separate Releases

from Deployments - Marcel de Vries
W04 Lock the Doors, Secure the Valuables,

and Set the Alarm - Eric D. Boyd

9:30 AM 10:45 AM W05 TypeScript: The Future of Front End
Web Development - Ben Hoelting

W06 A Dozen Ways to Mess Up Your
Transition From Windows Forms to XAML

- Billy Hollis
W07 Overcoming the Challenges of Mobile

Development in the Enterprise - Roy Cornelissen
W08 Computer, Make It So!

- Veronika Kolesnikova & Willy Ci

11:00 AM 12:00 PM General Session: To Be Announced - Kasey Uhlenhuth, Program Manager, .NET & Visual Studio, Microsoft
12:00 PM 1:00 PM Birds-of-a-Feather Lunch Birds-of-a-Feather Lunch

1:00 PM 1:30 PM Dessert Break - Visit Exhibitors - Exhibitor Raffle @ 1:15pm (Must be present to win) Dessert Break - Visit Exhibitors - Exhibitor Raffle @ 1:15pm (Must be present to win)

1:30 PM 1:50 PM W09 Fast Focus: 0-60 for Small Projects in Visual Studio Team Services
- Alex Mullans

W10 Fast Focus: Cross Platform Device Testing
with xUnit - Oren Novotny

W11 Fast Focus: Understanding .NET Standard
- Jason Bock

2:00 PM 2:20 PM W12 Fast Focus: HTTP/2: What You Need to Know
- Robert Boedigheimer

W13 Fast Focus: Serverless Computing: Azure Functions
and Xamarin in 20 minutes - Laurent Bugnion W14 Fast Focus: TBD - Scott Klein

2:30 PM 3:45 PM W15 Advanced Fiddler Techniques
- Robert Boedigheimer

W16 Building Cross-Platforms Business Apps
with C# and CSLA .NET - Rockford Lhotka

W17 Versioning NuGet and npm Packages
- Alex Mullans

W18 Getting to the Core of .NET Core
- Adam Tuliper

4:00 PM 5:15 PM W19 Assembling the Web - A Tour of
WebAssembly - Jason Bock

W20 Radically Advanced XAML: Dashboards,
Timelines, Animation, and More - Billy Hollis

W21 Encrypting the Web
- Robert Boedigheimer

W22 Porting MVVM Light to .NET Standard:
Lessons Learned - Laurent Bugnion

7:00 PM 8:30 PM VSLive! High Roller Evening Out VSLive! High Roller Evening Out

START TIME END TIME Day 3: Thursday, March 15, 2018 Day 3: Thursday, March 15, 2018
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM TH01 ASP.NET Core 2 For Mere Mortals
- Philip Japikse

TH02 Performance in 60 Seconds – SQL
Tricks Everybody MUST Know - Pinal Dave

TH03 Demystifying Microservice Architecture
- Miguel Castro

TH04 Cognitive Services in Xamarin Applications
- Veronika Kolesnikova

9:30 AM 10:45 AM TH05 Getting to the Core of ASP.NET Core
Security - Adam Tuliper

TH06 Secrets of SQL Server - Database
Worst Practices - Pinal Dave

TH07 Unit Testing Makes Me Faster: Convincing Your
Boss, Your Co-Workers, and Yourself - Jeremy Clark

TH08 Publish Your Angular App to Azure App Services
- Brian Noyes

11:00 AM 12:00 PM Panel Discussion: To Be Announced Panel Discussion: To Be Announced

12:00 PM 1:00 PM Lunch Lunch

1:00 PM 2:15 PM TH09 Entity Framework Core 2
For Mere Mortals - Philip Japikse

TH10 SQL Server 2017 - Intelligence Built-in
- Scott Klein

TH11 Writing Testable Code and Resolving
Dependencies - DI Kills Two Birds with One Stone

- Miguel Castro
TH12 Signing Your Code the Easy Way

- Oren Novotny

2:30 PM 3:45 PM TH13 MVVM and ASP.NET Core Razor Pages
- Ben Hoelting

TH14 Introduction to Azure Machine
Learning - James McCaffrey

TH15 “Doing DevOps” as a Politically
Powerless Developer - Damian Brady TH16 Analyzing Code in .NET - Jason Bock

4:00 PM 5:15 PM TH17 Securing Web Apps and APIs
with IdentityServer - Brian Noyes

TH18 Introduction to the CNTK v2 Machine
Learning Library - James McCaffrey

TH19 I’ll Get Back to You: Task, Await, and
Asynchronous Methods - Jeremy Clark

TH20 Multi-targeting the World: A Single Project
to Rule Them All - Oren Novotny

START TIME END TIME Post-Conference Workshops: Friday, March 16, 2018 (Separate entry fee required) Post-Conference Workshops: Friday, March 16, 2018 (Separate entry fee required)

7:30 AM 8:00 AM Post-Conference Workshop Registration - Coffee and Morning Pastries Post-Conference Workshop Registration - Coffee and Morning Pastries

8:00 AM 5:00 PM F01 Workshop: Creating Mixed Reality Experiences for HoloLens & Immersive Headsets
with Unity - Nick Landry & Adam Tuliper

F02 Workshop: Distributed Cross-Platform Application
Architecture - Jason Bock & Rockford Lhotka

F03 Workshop: UX Design for Developers:
Basics of Principles and Process - Billy Hollis

ALM / DevOps Cloud Computing Database and Analytics Native Client Software
Practices

Visual Studio /
.NET Framework Web Client Web ServerBACK BY POPULAR DEMAND

Sunday Pre-Con
Hands-On Labs
Choose From:

HOL01 Special 2-Day Hands-
On Lab: Modern Security
Architecture for ASP.NET Core
Sunday, March 11,
9:00am – 6:00pm (Part 1)*

Monday, March 12,
9:00am – 6:00pm (Part 2)*

Brock Allen
You will learn:
> The security architecture of

ASP.NET Core
> About authenticating users

with OpenID Connect
> How to protect Web APIs

with OAuth2
* This 2-day Hands-On Lab is available with

the six-day conference package or on its
own. Details at vslive.com/lasvegasmsdn.

HOL02 From 0-60 in a Day with
Xamarin and Xamarin.Forms
Introductory / Intermediate
Sunday, March 11,
9:00am – 6:00pm

Roy Cornelissen & Marcel de Vries
You will learn:
> How to build your first mobile

apps on three platforms with the
Xamarin framework

> How to maintain platform
uniqueness while sharing a
large chunk of your codebase

> How to think “mobile first” in
your application architecture

HOL03 Busy Developer’s
HOL on Angular
Sunday, March 11,
9:00am – 6:00pm

Ted Neward
In this Hands-On Lab, we’ll start
from zero, with a little TypeScript,
then start working with Angular 2:
its core constructs and how it
works with components, modules,
and of course the ubiquitous
model/view/controller approach.

ONLY $645 through January 19
Applies to HOL02 and HOL03 only.

Sp
ea

ke
rs

 a
nd

 s
es

si
on

s s
ub

je
ct

 to
 c

ha
ng

e

Untitled-3 4 12/4/17 1:08 PM

www.vslive.com/lasvegasmsdn
www.vslive.com/lasvegasmsdn

Bally’s Hotel & Casino
will play host to
Visual Studio Live!, and
is offering a special
reduced room rate to
conference attendees.

CONNECT WITH
VISUAL STUDIO LIVE!

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

vslive.com/lasvegasmsdn

START TIME END TIME Full Day Hands-On Labs: Sunday, March 11, 2018 (Separate entry fee required) Full Day Hands-On Labs: Sunday, March 11, 2018 (Separate entry fee required)

8:00 AM 9:00 AM Pre-Conference Hands-On Lab Registration - Coffee and Morning Pastries Pre-Conference Hands-On Lab Registration - Coffee and Morning Pastries

9:00 AM 6:00 PM HOL01 Full Day Hands-On Lab: Modern Security Architecture for ASP.NET Core (Part 1)
- Brock Allen

HOL02 Full Day Hands-On Lab: From 0-60 in a
Day with Xamarin and Xamarin.Forms

- Roy Cornelissen & Marcel de Vries
HOL03 Full Day Hands-On Lab: Busy Developer’s

HOL on Angular - Ted Neward

4:00 PM 6:00 PM Conference Registration Open Conference Registration Open

START TIME END TIME Pre-Conference Workshops: Monday, March 12, 2018 (Separate entry fee required) Pre-Conference Workshops: Monday, March 12, 2018 (Separate entry fee required)

7:30 AM 9:00 AM Pre-Conference Workshop Registration - Coffee and Morning Pastries Pre-Conference Workshop Registration - Coffee and Morning Pastries

9:00 AM 6:00 PM HOL01 Full Day Hands-On Lab: Modern Security Architecture for ASP.NET Core (Part 2)
- Brock Allen

M02 Workshop: Developer Dive into SQL Server 2016
- Leonard Lobel

M03 Workshop: Add Intelligence to Your Solutions with
AI, Bots, and More - Brian Randell

7:00 PM 9:00 PM Dine-A-Round Dine-A-Round

START TIME END TIME Day 1: Tuesday, March 13, 2018 Day 1: Tuesday, March 13, 2018
7:00 AM 8:00 AM Registration - Coffee and Morning Pastries Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM T01 Go Serverless with Azure Functions
- Eric D. Boyd

T02 Getting Ready to Write Mobile
Applications with Xamarin - Kevin Ford

T03 Database Development with SQL Server Data Tools
- Leonard Lobel

T04 What’s New in Visual Studio 2017 for C# Developers
- Kasey Uhlenhuth

9:30 AM 10:45 AM T05 Angular 101 - Deborah Kurata T06 Lessons Learned from Real World
Xamarin.Forms Projects - Nick Landry

T07 Introduction to Azure Cosmos DB
- Leonard Lobel

T08 Using Visual Studio Mobile Center to Accelerate
Mobile Development - Kevin Ford

11:00 AM 12:00 PM KEYNOTE: .NET Everywhere and for Everyone - James Montemagno, Principal Program Manager – Xamarin, Microsoft
12:00 PM 1:00 PM Lunch Lunch

1:00 PM 1:30 PM Dessert Break - Visit Exhibitors Dessert Break - Visit Exhibitors

1:30 PM 2:45 PM T09 Busy Developer’s Guide to Chrome
Development - Ted Neward

T10 Works On My Machine… Docker for
Developers - Chris Klug

T11 DevOps for the SQL Server Database
- Brian Randell T12 To Be Announced

3:00 PM 4:15 PM T13 Angular Component Communication
- Deborah Kurata

T14 Customizing Your UI for Mobile Devices:
Techniques to Create a Great User Experience

- Laurent Bugnion
T15 PowerShell for Developers

- Brian Randell T16 To Be Announced

4:15 PM 5:30 PM Welcome Reception Welcome Reception

START TIME END TIME Day 2: Wednesday, March 14, 2018 Day 2: Wednesday, March 14, 2018
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM
W01 The Whirlwind Tour of Authentication

and Authorization with ASP.NET Core
- Chris Klug

W02 Building Mixed Reality Experiences
for HoloLens & Immersive Headsets in Unity

- Nick Landry
W03 Using Feature Toggles to Separate Releases

from Deployments - Marcel de Vries
W04 Lock the Doors, Secure the Valuables,

and Set the Alarm - Eric D. Boyd

9:30 AM 10:45 AM W05 TypeScript: The Future of Front End
Web Development - Ben Hoelting

W06 A Dozen Ways to Mess Up Your
Transition From Windows Forms to XAML

- Billy Hollis
W07 Overcoming the Challenges of Mobile

Development in the Enterprise - Roy Cornelissen
W08 Computer, Make It So!

- Veronika Kolesnikova & Willy Ci

11:00 AM 12:00 PM General Session: To Be Announced - Kasey Uhlenhuth, Program Manager, .NET & Visual Studio, Microsoft
12:00 PM 1:00 PM Birds-of-a-Feather Lunch Birds-of-a-Feather Lunch

1:00 PM 1:30 PM Dessert Break - Visit Exhibitors - Exhibitor Raffle @ 1:15pm (Must be present to win) Dessert Break - Visit Exhibitors - Exhibitor Raffle @ 1:15pm (Must be present to win)

1:30 PM 1:50 PM W09 Fast Focus: 0-60 for Small Projects in Visual Studio Team Services
- Alex Mullans

W10 Fast Focus: Cross Platform Device Testing
with xUnit - Oren Novotny

W11 Fast Focus: Understanding .NET Standard
- Jason Bock

2:00 PM 2:20 PM W12 Fast Focus: HTTP/2: What You Need to Know
- Robert Boedigheimer

W13 Fast Focus: Serverless Computing: Azure Functions
and Xamarin in 20 minutes - Laurent Bugnion W14 Fast Focus: TBD - Scott Klein

2:30 PM 3:45 PM W15 Advanced Fiddler Techniques
- Robert Boedigheimer

W16 Building Cross-Platforms Business Apps
with C# and CSLA .NET - Rockford Lhotka

W17 Versioning NuGet and npm Packages
- Alex Mullans

W18 Getting to the Core of .NET Core
- Adam Tuliper

4:00 PM 5:15 PM W19 Assembling the Web - A Tour of
WebAssembly - Jason Bock

W20 Radically Advanced XAML: Dashboards,
Timelines, Animation, and More - Billy Hollis

W21 Encrypting the Web
- Robert Boedigheimer

W22 Porting MVVM Light to .NET Standard:
Lessons Learned - Laurent Bugnion

7:00 PM 8:30 PM VSLive! High Roller Evening Out VSLive! High Roller Evening Out

START TIME END TIME Day 3: Thursday, March 15, 2018 Day 3: Thursday, March 15, 2018
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM TH01 ASP.NET Core 2 For Mere Mortals
- Philip Japikse

TH02 Performance in 60 Seconds – SQL
Tricks Everybody MUST Know - Pinal Dave

TH03 Demystifying Microservice Architecture
- Miguel Castro

TH04 Cognitive Services in Xamarin Applications
- Veronika Kolesnikova

9:30 AM 10:45 AM TH05 Getting to the Core of ASP.NET Core
Security - Adam Tuliper

TH06 Secrets of SQL Server - Database
Worst Practices - Pinal Dave

TH07 Unit Testing Makes Me Faster: Convincing Your
Boss, Your Co-Workers, and Yourself - Jeremy Clark

TH08 Publish Your Angular App to Azure App Services
- Brian Noyes

11:00 AM 12:00 PM Panel Discussion: To Be Announced Panel Discussion: To Be Announced

12:00 PM 1:00 PM Lunch Lunch

1:00 PM 2:15 PM TH09 Entity Framework Core 2
For Mere Mortals - Philip Japikse

TH10 SQL Server 2017 - Intelligence Built-in
- Scott Klein

TH11 Writing Testable Code and Resolving
Dependencies - DI Kills Two Birds with One Stone

- Miguel Castro
TH12 Signing Your Code the Easy Way

- Oren Novotny

2:30 PM 3:45 PM TH13 MVVM and ASP.NET Core Razor Pages
- Ben Hoelting

TH14 Introduction to Azure Machine
Learning - James McCaffrey

TH15 “Doing DevOps” as a Politically
Powerless Developer - Damian Brady TH16 Analyzing Code in .NET - Jason Bock

4:00 PM 5:15 PM TH17 Securing Web Apps and APIs
with IdentityServer - Brian Noyes

TH18 Introduction to the CNTK v2 Machine
Learning Library - James McCaffrey

TH19 I’ll Get Back to You: Task, Await, and
Asynchronous Methods - Jeremy Clark

TH20 Multi-targeting the World: A Single Project
to Rule Them All - Oren Novotny

START TIME END TIME Post-Conference Workshops: Friday, March 16, 2018 (Separate entry fee required) Post-Conference Workshops: Friday, March 16, 2018 (Separate entry fee required)

7:30 AM 8:00 AM Post-Conference Workshop Registration - Coffee and Morning Pastries Post-Conference Workshop Registration - Coffee and Morning Pastries

8:00 AM 5:00 PM F01 Workshop: Creating Mixed Reality Experiences for HoloLens & Immersive Headsets
with Unity - Nick Landry & Adam Tuliper

F02 Workshop: Distributed Cross-Platform Application
Architecture - Jason Bock & Rockford Lhotka

F03 Workshop: UX Design for Developers:
Basics of Principles and Process - Billy Hollis

ALM / DevOps Cloud Computing Database and Analytics Native Client Software
Practices

Visual Studio /
.NET Framework Web Client Web Server

 March 11 – 16, 2018
Bally’s Hotel & Casino

Untitled-3 5 12/4/17 1:08 PM

www.vslive.com/lasvegasmsdn
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine46

Back in October 2015, one of us had the pleasure to author
an article about .NET Universal Windows Platform (UWP) devel­
opment (msdn.com/magazine/mt590967). A lot has changed with .NET
UWP development since then, and we wanted to address those
changes with a new article that helps get developers up to speed.

Since October 2015, Microsoft has published a new release of
Visual Studio 2017, several new SDKs (including the most recent
Windows 10 Fall Creators Update SDK), the Windows Applica­
tion Packaging Project, .NET Standard 2.0 support, improvements
to NuGet, the new Fluent design system, new community driven
tools including Windows Template Studio, and more. Many of
these changes and improvements to the UWP developer ecosys­
tem are designed to make it easier to bring your existing .NET
assets forward, optimize your application deployment strategy on

Windows 10, and accelerate your UWP development to build great
applications as quickly as possible.

The Windows 10 Fall Creators Update brings a host of improve­
ments for UWP developers, with Visual Studio 2017 version 15.5 and
later providing the best support for the Windows 10 Fall Creators
Update SDK (10.0.16299.0). Some of the most important changes
include new capabilities for enterprise applications, streamlined
application deployment, and support for both .NET Standard 2.0
and the new Fluent Design System. Let’s explore these advancements.

New Capabilities in Windows
for Enterprise Applications
Microsoft recognized the need to improve the Windows 10 Platform
for enterprise developers building applications for Windows on
desktop PCs and has made important strides in this area with the
Windows 10 Fall Creators Update.

Best of Both UWP and Win32 Microsoft has improved the
Windows 10 Platform with the Desktop Bridge (aka.ms/desktopbridge)
to enhance its appeal to all .NET developers, whether their current
focus is on the UWP, Windows Presentation Foundation (WPF),
Windows Forms or Xamarin. With the new App Packaging project
type in Visual Studio 2017 version 15.5, you can create Windows
App Packages for your WPF or Windows Forms projects, just like
you can for UWP projects.

Once your application is packaged, you get all the Windows 10
application deployment benefits, including the option to distrib­
ute via the Microsoft Store (for consumer apps), the Microsoft

U N IV E RSAL WINDOWS PL ATF OR M

What’s New for .NET
UWP Development?
Daniel Jacobson and Stefan Wick

This article discusses:
•	Improvements for UWP developers in the Windows 10 Fall

Creators Update
•	How developers can modernize WPF and Windows Forms

applications with Windows 10 and the UWP
•	What’s new in Visual Studio 2017 for Windows client

application developers
•	Support for .NET Standard 2.0 in UWP development projects

Technologies discussed:
Visual Studio 2017, NuGet, .NET, Universal Windows Platform,
Windows Presentation Foundation, Windows Forms

0118msdn_JacobsonUWP_v3_46-53.indd 46 12/12/17 11:27 AM

http://msdn.com/magazine/mt590967
http://aka.ms/desktopbridge

47January 2018msdnmagazine.com

Store for Business and Education, or via any of your favorite app
deployment options such as Intune. Packaged apps have access to
both the full UWP API surface and the Win32 APIs on desktop, so
you can modernize your WPF and Windows Forms applications
gradually with UWP APIs and Windows 10 features. You can also
include your Win32 components in your UWP apps so that they
light up on the desktop with all Win32 capabilities.

Peace of Mind Users can install apps without regret and with­
out concern that they contain malware. Installations don’t require
admin privileges, and each application install is isolated from
others, easing management. Uninstalls are guaranteed to be clean,
with no rot in the Registry or file system or other unexpected side
effects from installing software. This method of distribution is now
also available for your WPF and Windows Forms applications
using the Windows Application Packaging Project.

Enterprise-Ready Security Windows Hello enables biometric
authentication for devices and compatible apps. The Windows 10
App Model protects your data and system health through UWP
app containers, which put the user in control over what apps can
and cannot do. In addition, apps must disclose their usage of
resources, such as location or microphone, which the user or IT
administrator controls via privacy settings.

Closing Gaps for Desktop Applications The recent Fall Creators
Update release has helped close the API and feature gaps between
UWP and Win32 desktop applications. Support for .NET Standard
2.0 has significantly increased the available API surface, while pro­
viding access to many important NuGet packages that previously
could not be used in UWP projects. For example, enterprise devel­
opers finally get access to SqlClient APIs to talk directly to SQL
Server databases from their UWP projects. Microsoft also continues
to improve the UWP App Model for desktop and enterprise
scenarios. Recent updates have enabled command-line activation,
auto-startup and capabilities for running with full-trust or with
unrestricted execution lifetime (extendedBackgroundTaskTime
and extendedExecutionUnconstrained).

Streamlined Application Deployment
Microsoft recognizes that many .NET developers are still building
Windows Forms and WPF applications. In addition to making it as
easy as possible to bring existing assets forward, the company aims to
solve a problem that many developers face today: deployment. With
Visual Studio 2017, it’s easier than ever to leverage the Desktop Bridge
(aka.ms/desktopbridge) to package existing Win32 .NET applications.

You can certainly submit Win32 applications to the Microsoft
Store with the Windows Application Packaging Project, but there

are many other ways to distribute applications packaged as an
.appx. These options support the deployment flexibility that many
organizations require.

Beginning with the Windows 10 Fall Creators Update, you
can host your own .appx installer on the Web to invoke the app
installer automatically. It’s as simple as adding an activation scheme
(ms-appinstaller:?source=) to the link to the .appx on the Web.
For more information, check out the blog post on direct Web
installs here: bit.ly/2mJfIUI. This approach makes it really easy to share
applications within your organization, simply by posting a link to
the .appx on a Web site, for example.

You can also create app installer manifests to support automatic
package updates. One advantage that this app installer technology
provides over a scheme like ClickOnce is that automatic updates
happen behind the scenes--the application can update before the
user of the application even launches it. To learn how to create
your own custom .appinstaller files for automatic application
updates in privately hosted deployment channels, check out the
blog here: bit.ly/2z4Fx3A.

If you need more capable device management tools in your
organization, you can leverage and distribute your applications
with Microsoft Intune (bit.ly/2B7OnyR). The Windows Application
Packaging Project is the fastest route to make your apps easily
managed via Microsoft Intune.

Last but not least, you can distribute your applications via the Visual
Studio App Center (bit.ly/2AKpsjJ). Visual Studio App Center allows for
rapid deployment to your development teams or beta testers of your
application. You can also easily enable analytics to determine who’s
using your applications, and how they’re using them.

With the Windows Application Packaging Project and so many
channels of distribution for .appx packages, it’s easy to package and
distribute your application for any scenario in your organization.

Support for .NET Standard 2.0
The Windows 10 Fall Creators Update is the first release of Windows
10 to provide support for .NET Standard 2.0. If you’re unfamiliar
with .NET Standard, you can get a lot of detail at aka.ms/dotnetstandard.
Effectively, .NET Standard is a reference implementation of the
base class library that any .NET platform can implement, be it .NET
Framework, .NET Core or Xamarin. The goal of .NET Standard
is to make it as easy as possible for .NET developers to share code
across any .NET platform on which they choose to work.

While there are some similarities with the Portable Class Library
(PCL) model, the biggest difference with .NET Standard is that
you don’t have to choose which platforms you’re targeting. If the

With Visual Studio 2017, it’s
easier than ever to leverage

the Desktop Bridge to package
existing Win32 .NET applications.

The recent Fall Creators Update
release has helped close the API
and feature gaps between UWP
and Win32 desktop applications.

0118msdn_JacobsonUWP_v3_46-53.indd 47 12/12/17 11:27 AM

http://msdnmagazine.com
http://bit.ly/2mJfIUI
http://bit.ly/2z4Fx3A
http://bit.ly/2B7OnyR
http://bit.ly/2AKpsjJ
http://aka.ms/dotnetstandard
http://aka.ms/desktopbridge

msdn magazine48 Universal Windows Platform

platform you target implements the base class library as defined
by the standard, the shared code will work. A huge advantage
of .NET Standard compared to PCLs is that when a new .NET
Platform is introduced with .NET Standard support, you don’t need
to modify your shared code libraries, because you won’t have to
add any new platform target.

Early iterations of .NET Standard (versions 1.x) were a great
start, but with the Windows 10 Fall Creators Update and .NET
Standard 2.0, Microsoft has made it drastically easier to share code
across .NET platforms. .NET Standard 2.0 has about 20,000 more
APIs compared to any 1.x version. In addition, .NET Standard 2.0
is supported with the .NET Framework version 4.6.1, as well as
UWP development for developers targeting the Windows 10 Fall
Creators Update. We’ll explore the nitty gritty details regarding
how all this works in the “.NET and UWP Development” section.

One other huge benefit of .NET
Standard 2.0 is that it provides a path
forward for many existing .NET
applications (whether they’re WPF
or Windows Forms). If your .NET
apps target .NET Framework 4.6.1
or later, you can start porting your
codebehind into .NET Standard 2.0
libraries. That same code can then
be shared across any .NET Platform
that implements .NET Standard 2.0.
The .NET Standard Compatibility
Matrix in Figure 1 shows how sup­
port plays out across versions.

This means you can start to port
your code into reusable libraries,
and when you’re ready, you can share

the same code in UWP apps, Xamarin apps, .NET Core apps and more.

To assist you in determining if your code is API-compatible with
.NET Standard 2.0, Microsoft created a portability analyzer that
will produce a report showing which APIs are compatible with each
.NET implementation (bit.ly/2zlgrBz). You can also check out a useful

Channel9 video from .NET Conf
2017 that steps through the entire
porting process, from a Windows
Forms .NET application to a UWP
application at bit.ly/2j9TB52.

Fluent Design System
With the evolution of computing
devices and the emergence of
mixed reality, it was essential
that the Windows design system
evolve, as well. To address this
shift, Microsoft released the Fluent
design system (fluent.microsoft.com).
Built on top of five building block
concepts—light, depth, motion,
material and scale—this system is
designed to support the next gen­
eration of UX across device types.

With the Windows 10 Fall Cre­
ators Update, you can already see
Fluent artifacts making their way
into Windows 10 and application

Figure 1 .NET Standard Compatibility Matrix

Figure 2 Fluent Design in Action

One other huge benefit of .NET
Standard 2.0 is that it provides a
path forward for many existing

.NET applications.

0118msdn_JacobsonUWP_v3_46-53.indd 48 12/12/17 11:27 AM

http://bit.ly/2zlgrBz
http://bit.ly/2j9TB52
http://fluent.microsoft.com

Americas: +1 903 306 1676
EMEA: +44 141 628 8900
Oceania: +61 2 8006 6987
sales@asposeptyltd.com

Manipulating Documents?
Document Manipulation APIs

Untitled-1 1 11/6/17 12:31 PM

https://downloads.groupdocs.com/
mailto:sales@asposeptyltd.com

msdn magazine50 Universal Windows Platform

development. A great way to see Fluent design in action is to take
a look at the XAMLUIBasics sample in the UWP samples on
GitHub (bit.ly/2mK4pvH).

Another sample (shown in Figure 2) that demonstrates Fluent
design principles in a more enterprise-focused scenario can be
found at aka.ms/eshopuwp/src. In this example, you can see the acrylic
material that provides a composited layer in the navigation pane.
You can also see light effects that serve to highlight the “Add new
item” navigation button.

Improvements to Visual Studio 2017
There are many improvements in Visual Studio 2017 compared to
Visual Studio 2015. Here, we’ll highlight some of the most import­
ant and impactful new capabilities of the IDE.

Let’s start with the latest tooling—
Visual Studio 2017. One of the core
priorities for Visual Studio 2017 was
to make setup as fast and as easy as
possible. As soon as you begin to
install Visual Studio 2017, you’ll
immediately recognize improve­
ments over Visual Studio 2015.

Things get started with the
Visual Studio Installer (see Figure
3), which allows you to manage all
installations of Visual Studio 2017.

It supports scenario-driven acqui­
sition with the introduction of
Workloads designed around what
developers need to get their job
done. Workloads make it so that
you only install what you need,
and not all the extra stuff that
often made Visual Studio 2015
take so long to install. In addition,
instances of Visual Studio 2017
can be installed side-by-side, so
you can install preview versions
(visualstudio.com/vs/preview) and
retail versions (visualstudio.com) on
the same machine. This lets you try
out the latest and greatest features
without impacting your produc­
tion environment.

In addition, beginning with the
Windows 10 Creators Update (10.0.15063.0), the SDK install can
be set up side-by-side, as well. Now you can enroll in the Windows
Insiders Program (insider.windows.com) and try out preview SDKs,
again without breaking your production environment.

Improvements to the XAML Designer
Visual Studio 2017 version 15.4 introduced some drastic updates
to the XAML Designer. These updates are centered on several
design considerations, including:

• �Significantly improved designer performance
• �High-fidelity designer surface, focused especially on

rendering artifacts introduced by the new Windows
Fluent Design System

• �Fewer designer exceptions to minimize distractions and
maximize developer productivity in the design surface

• �Improved designer UX without breaking or changing exist­
ing XAML development in Visual Studio and Blend

• �Updated tools that help maximize the productivity of
developers building Windows experiences.

These updates to the designer required a rethink of the designer’s
underlying architecture. The impact on Windows developers in the
short term is that Microsoft must rebuild much of the tooling with
which developers have grown familiar. To manage this challenge,
Microsoft has only released the updates to the XAML Designer

to UWP developers targeting the
Windows 10 Fall Creators Update
(10.0.16299.0) or later. You can read
about the updates in much greater
detail at aka.ms/uwpsiblog.

Windows Application
Packaging Project
To streamline application deploy­
ment with Windows 10, you can now
create a new project type called the
Windows Application Packaging

Figure 3 Visual Studio Installer

Figure 4 WapProj Demo

 One of the core priorities for
Visual Studio 2017 was to
make setup as fast and as

easy as possible.

0118msdn_JacobsonUWP_v3_46-53.indd 50 12/12/17 11:27 AM

http://bit.ly/2mK4pvH
http://aka.ms/eshopuwp/src
http://visualstudio.com/vs/preview
http://visualstudio.com
http://insider.windows.com
http://aka.ms/uwpsiblog

msdn.microsoft.com/flashnewsletter

Sign up to receive MSDN FLASH, which delivers
the latest resources, SDKs, downloads, partner
offers, security news, and updates on national
and local developer events.

Get news from MSDN
in your inbox!

magazine

Untitled-2 1Untitled-2 1 12/11/15 11:06 AM12/11/15 11:06 AM

https://msdn.microsoft.com/flashnewsletter

msdn magazine52 Universal Windows Platform

Project. This project allows you to add references to Win32 applica­
tions (for example, Windows Forms and WPF) and package them
using the .appx package format.

Taking advantage of this project is simple. Just add a new
Windows Application Packaging Project to your solution and add
a reference to your Win32 application using the Applications node,
as shown in Figure 4.

To create packages, right-click
on the Windows Application
Packaging Project and select Store
| Create App Packages. The out­
put will be an .appx that you can
deploy using any of the methods
mentioned in the “Streamlined
Application Deployment” section
of this article.

Improvements to NuGet
With Visual Studio 2017, all .NET
UWP apps take advantage of the
NuGet package reference model
for adding NuGet packages to proj­
ects (bit.ly/2AXDDlz). NuGet package
references provide several benefits
for both NuGet package authors
and NuGet package consumers.

PackageReference has direct MS­
Build integration, which enables
new scenarios such as package
management across multiple proj­
ects. Let’s consider an example. Say
you work in an enterprise that has
a core library shared across all (or
many) projects that your enterprise
produces. Traditionally, when an
update to that library was made,
every project that consumes that
package would need to update the
reference to take advantage of the
latest version. With PackageRefer­
ence, your enterprise can create a
shared MSBuild target that gets
imported into every project, and
when an update to your core librar­
ies are made, you can update the

version in the custom MSBuild target. Every project that imports
that MSBuild target will now reference the updated version of the
library with no need to update every single project.

In addition, MSBuild integration enables conditional package
references, which provides finer control over your project depen­
dencies. Let’s consider the same example, but now producing
both a Debug and Release version of the core library. The shared
MSBuild target could specify conditional package dependencies
to consume the Debug version of the library in Debug builds
of the projects that consume the library. This way, you have the
unoptimized version of the library to provide the best debugging
experience. You can configure the conditional dependency to then
switch to the Release version of the core library when building
Release versions of the project.

Finally, for NuGet package authors, you can leverage platform
multi-targeting in a single NuGet package. One great use case of
platform multi-targeting is publishing a single NuGet package to

Figure 6 Windows Template Studio Project Generation

Figure 5 .NET Standard 2.0-Compatible UWP App

MSBuild integration enables
conditional package references,
which provides finer control over

your project dependencies.

0118msdn_JacobsonUWP_v3_46-53.indd 52 12/12/17 11:27 AM

http://bit.ly/2AXDDlz

53January 2018msdnmagazine.com

support all .NET platforms. Let’s say you’ve previously built and
managed a .NET Framework library on NuGet that you want to
update to support .NET Standard 2.0. The latest version of your
NuGet package can maintain both implementations so the latest
version of the package is always applicable, regardless of the con­
suming project. For example, if you have a .NET Framework 4.5
implementation and a .NET Standard 2.0 implementation, any
.NET application that’s targeting .NET Framework 4.5 or later
or implements .NET Standard 2.0 will be able to consume the
NuGet package. For UWP development, the specified platform
is correlated to the TargetPlatformMinVersion of your project.
If your TargetPlatformMinVersion is greater than or equal to the
platform specified in the NuGet package, the NuGet package can
be referenced in the project.

In Visual Studio 2015, the .NET Native compiler was shipped as
part of Visual Studio. Even though the .NET Core implementation
for UWP development was shipped as a set of NuGet packages,
developers faced a slightly fragmented experience when it came
to .NET Native. With Visual Studio 2017, all of .NET for UWP
development ships as part of the .NET implementation for the
UWP NuGet package, including .NET Native. This gives you the
flexibility to move at your pace—by specifying the version of .NET
that you need and that you know works for your application.

.NET Standard 2.0 and UWP Development
Previously mentioned in this article is that .NET Standard 2.0 is
available in the Windows 10 Fall Creators update. To take advan­
tage of the .NET Standard 2.0 implementation, you must set your
TargetPlatformMinVersion of your UWP project to the Windows
10 Fall Creators Update or later, as shown in Figure 5. You must
also reference the Microsoft.NETCore.UniversalWindowsPlatform
NuGet package version 6.0 or later.

The Microsoft.NETCore.UniversalWindowsPlatform NuGet
package takes advantage of platform multi-targeting support for
UWP development so you can always update to the latest ver­
sion of the package. If you are building an application that has a
TargetPlatformMinVersion less than the Windows 10 Fall Creators
Update, the NuGet restore process will bring in the .NET Stan­
dard 1.4 implementation of .NET Core for Windows 10. If you set
the TargetPlatformMinVersion to the Windows 10 Fall Creators
Update or later, NuGet will bring in the .NET Standard 2.0 imple­
mentation of .NET Core for Windows 10. Now, that was a lot of
text—what it means for you is that you shouldn’t have to worry
about which version of the NuGet package to reference. You can
always reference the latest and it should always work, regardless
of your Windows 10 target.

Useful Open Source Projects
Finally, we wanted to leave you with some helpful open source
projects that you can use to accelerate UWP development. These
include Windows Template Studio, the UWP Community Toolkit
and the Telerik Controls for UWP Development.

Windows Template Studio Windows Template Studio (shown
in Figure 6) is a dynamic template generator for UWP develop­
ment. It’s the fastest way to get started building a production-ready

UWP app. It leverages best practices for development, and lets you
build many views, background tasks, and more in a simple wizard
experience. Using Windows Template Studio for all new application
development in an organization can help ensure consistent look
and feel across apps and encourage best practices for application
architectures. Built, maintained and updated by a passionate com­
munity of Windows developers, Windows Template Studio is a great
way to get started building fully-fledged UWP apps (aka.ms/wts).

Telerik Controls for UWP Development Back in February
2017, Telerik announced that it was open sourcing the Telerik UI
for UWP controls library. The license provides free use for anyone
building UWP apps. Telerik has a history of building powerful,
performant, enterprise-ready controls—and with UWP develop­
ment they’re now free! Read more about the Telerik open source
announcement on the company’s blog: bit.ly/2AZA0iI.

UWP Community Toolkit The UWP Community Toolkit
(github.com/Microsoft/UWPCommunityToolkit) is another community-driven
project that provides helpful tools for UWP development. The
toolkit includes templated animations, controls, helper classes,
services and more. Use the UWP Community Toolkit to acceler­
ate your development.

Closing Thoughts
It’s clear that a lot has changed for .NET and UWP developers,
with so many new tools and updates to make building Windows
applications as fast and easy as possible. With .NET Standard 2.0
and all the free resources available, it’s never been easier to build
enterprise-ready applications with the Universal Windows Platform.
For .NET developers, the Desktop Bridge platform and updated
tooling combine to let you build powerful desktop applications
that take advantage of the best of UWP and Win32, including WPF
and Windows Forms. Microsoft is constantly improving its tools
based on your feedback, so as you build your Windows applica­
tions, don’t hesitate to reach out by e-mail or Twitter. 	 n

Daniel Jacobson is a program manager for Visual Studio, working on tools
for Windows platform developers. Reach him at dajaco@microsoft.com or on
Twitter: @pmatmic.

Stefan Wick is a program manager lead in Windows, working on the
Universal Windows Platform. Reach him at swick@microsoft.com or on
Twitter: @StefanWickDev.

Thanks to the following Microsoft technical experts for reviewing this article:
Mike Harsh, Matthijs Hoekstra, Unni Ravindranathan and Ricardo (Rido) Minguez

With .NET Standard 2.0 and all the
free resources available, it’s never
been easier to build enterprise-
ready applications with the UWP.

0118msdn_JacobsonUWP_v3_46-53.indd 53 12/12/17 11:27 AM

mailto:dajaco@microsoft.com
mailto:swick@microsoft.com
http://msdnmagazine.com
http://aka.ms/wts
http://bit.ly/2AZA0iI
http://github.com/Microsoft/UWPCommunityToolkit
www.twitter.com/pmatmic
www.twitter.com/StefanWickDev

Join us for TechMentor, August 6 – 8, 2018, as we return to
Microsoft Headquarters in Redmond, WA. In today’s IT world,
more things change than stay the same. As we celebrate the
20th year of TechMentor, we are more committed than ever to
providing immediately usable IT education, with the tools you
need today, while preparing you for tomorrow –
keep up, stay ahead and avoid Winter, ahem, Change.

Plus you’ll be at the source, Microsoft HQ, where you can have
lunch with Blue Badges, visit the company store, and experience
life on campus for a week!

AUGUST 6 – 10, 2018 • Microsoft Headquarters, Redmond, WA

Change is Coming.
Hot Topics Covered:

Windows PowerShell

Windows Server

DevOps

Azure

Hyper-V

IT Security
Are You Ready?

EVENT PARTNER PRODUCED BYSUPPORTED BY

Untitled-2 2 12/12/17 12:27 PM

www.techmentorevents.com/redmond

CONNECT WITH TECHMENTOR

Twitter
@TechMentorEvent

Facebook
Search “TechMentor”

LinkedIn
Search “TechMentor”

You owe it to yourself, your company and your
career to be at TechMentor Redmond 2018!

SAVE $400!
REGISTER NOW
Use Promo Code TMJAN2

techmentorevents.com/redmond

In-Depth Training for IT Pros @ Microsoft Headquarters

Untitled-2 3 12/12/17 12:11 PM

www.techmentorevents.com/redmond
https://twitter.com/TechMentorEvent
https://www.facebook.com/techmentorevents
https://www.linkedin.com/

msdn magazine56

One day, your boss comes to you with a new assignment:
You must create a new line-of-business (LOB) app for Windows.
Web isn’t an option and you must choose the best platform for it,
to ensure it will be available for at least 10 more years.

That seems to be a difficult choice: You can select Windows Forms
or Windows Presentation Foundation (WPF), which are mature
technologies with a lot of components, and you, as a .NET devel-
oper, have a lot of knowledge and experience working with them.
Will they be there in 10 years? My guess is yes; there’s no sign that
Microsoft will discontinue any of them in the near future. But in
addition to being a bit old (Windows Forms is from 2001 and WPF
was created in 2006), these technologies have some other problems:

Windows Forms doesn’t use the latest graphics cards and you’re
stuck with the same old boring style, unless you use extra compo-
nents or do some magic tricks. WPF, though it’s still being updated,
hasn’t caught up with the latest improvements to the OS and its
SDK. Moreover, neither can be deployed to the Windows Store and
benefit from it: There’s no easy deploy and install/uninstall, world-
wide discovery and distribution, and so on. You can use Centennial
to package the apps, but that’s not like getting “the real thing.”

Digging a little more, you discover the Universal Windows
Platform (UWP) for developing for Windows 10 and see that
it doesn’t have the downsides of Windows Forms and WPF. It’s
being actively improved and can be used with no change in a wide
range of devices, from the tiny Raspberry Pi to the huge Surface
Hub. But everybody says that the UWP is for developing small apps
for Windows tablets and phones; there’s no such thing as an LOB
app using the UWP. And, besides that, it’s very difficult to learn and
develop: all those new patterns, the XAML language, the sandbox
that limits what can be done, and on and on.

All that is far from the reality. Though in the past the UWP had
some limitations, and could be difficult to learn and use, this is no
longer true. There’s been aggressive development of new features—
with the new Fall Creators Update (FCU) and its SDK you can even
use .NET Standard 2.0 APIs, as well as access SQL Server directly.
At the same time, new tools and components can give you the
best experience to develop a new app. Windows Template Studio
(WTS) is an extension to Visual Studio that provides a fast start to

U N IV E RSAL WINDOWS PL ATF OR M

Creating a
Line-of-Business App
with the UWP
Bruno Sonnino

This article discusses:
•	Universal Windows Platform development

•	.NET Standard 2.0

•	Windows Template Studio

•	Telerik controls for the UWP

Technologies discussed:
Universal Windows Platform, .NET Standard 2.0, Windows
Template Studio, SQL Server

Code download available at:
github.com/bsonnino/lobuwp

0118msdn_SonninoUWP_v3_56-63.indd 56 12/12/17 9:01 AM

http://github.com/bsonnino/lobuwp

57January 2018msdnmagazine.com

a full-featured UWP app and you can use the Telerik components
for UWP for free, for the best UX. Not bad, no? Now you have a
new platform for developing your UWP LOB apps!

In this article, I’m going to develop a UWP LOB app using WTS,
the Telerik components and direct access to SQL Server using
.NET Standard 2.0, so you can see how everything works firsthand.

Introduction to the Windows Template Studio
As I said before, you need the FCU and its corresponding SDK
to use .NET Standard 2.0. Once you have FCU installed on your
machine (if you aren’t sure, press Win+R and type Winver to show
your Windows version. Your version should be 1709 or newer).
The support for .NET Standard 2.0 in the UWP is available only in
Visual Studio 2017 update 4 or newer, so if you haven’t updated, you

must do it now. You also need the
.NET 4.7 runtime installed to use it.

With the infrastructure in place,
you can install WTS. In Visual
Studio, go to Tools | Extensions
and Updates and search for
Windows Template Studio. After
you download it, restart Visual
Studio to finish the installation.
You can also install it by going to
aka.ms/wtsinstall, downloading the
installer and then installing WTS.

Windows Template Studio is a
new, open source extension (you
can get the source code from
aka.ms/wts) that will give you a great
quick start to UWP development:
You can choose the type of proj-
ect (a Navigation Pane with the

hamburger menu, Blank, or Pivot and Tabs), the Model-View-View-
Model (MVVM) framework for your MVVM pattern, the pages
you want in your project and the Windows 10 features you want to
include. There’s a lot of development going on in this project, and
PRISM, Visual Basic templates and Xamarin support are already
available in the nightly builds (coming soon to the stable version).

With WTS installed, you can go to Visual Studio and create a
new project using File | New Project | Windows Universal and
select the Windows Template Studio. A new window will open to
choose the project (see Figure 1).

Select the Navigation Pane project and the MVVM Light frame-
work, then select Next. Now, choose the pages in the app, as shown
in Figure 2.

As you can see in the right Summary column, there’s already a
blank page selected, named Main.
Select a Settings page and name it
Settings, and a Master-Detail page
and name it Sales, then click on the
Next button. In the next window
you can select some features for
the app, such as Live Tile or Toast,
or a First Use dialog that will be
presented the first time the app is
run. I won’t choose any features
now, except the Settings storage
that’s selected when you choose
the Settings page.

Now, click on the Create button
to create the new app with the
selected features. You can run the
app—it’s a complete app with a
hamburger menu, two pages (blank
and master-detail) and a settings
page (accessed by clicking the cog
icon at the bottom) that allows you
to change themes for the app.

Figure 1 Windows Template Studio Main Screen

Figure 2 Page Selection

0118msdn_SonninoUWP_v3_56-63.indd 57 12/12/17 9:01 AM

http://msdnmagazine.com
http://aka.ms/wtsinstall
http://aka.ms/wts

msdn magazine58 Universal Windows Platform

If you go to Solution Explorer, you’ll see that many folders were
created for the app, such as Models, ViewModels and Services.
There’s even a Strings folder with an en-US subfolder for the local-
ization of strings. If you want to add more languages to the app, you
just need to add a new subfolder to the Strings folder, name it with
the locale of the language (like fr-FR), copy the Resources.resw file
and translate it to the new language. Impressive what you’ve been
able to do with just a few clicks, no? But I’m pretty sure that’s not
what your boss had in mind when he gave you the assignment, so
let’s go customize that app!

Accessing SQL Server from the App
One nice feature that was introduced in the FCU and in Visual
Studio update 4 is the support for .NET Standard 2.0 in the UWP.
This is a great improvement, because it allows UWP apps to use a

public class SalesViewModel : ViewModelBase
{
 private Order _selected;

 public Order Selected
 {
 get => _selected;
 set
 {
 Set(ref _selected, value);
 }
 }

 public ObservableCollection<Order> Orders { get; private set; }

 public async Task LoadDataAsync(MasterDetailsViewState viewState)
 {
 var orders = await DataService.GetOrdersAsync();
 if (orders != null)
 {
 Orders = new ObservableCollection<Order>(orders);
 RaisePropertyChanged("Orders");
 }
 if (viewState == MasterDetailsViewState.Both)
 {
 Selected = Orders.FirstOrDefault();
 }
 }
}

Figure 4 SalesViewModel

public static async Task<IEnumerable<Order>> GetOrdersAsync()
{
 using (SqlConnection conn = new SqlConnection(
 "Database=WideWorldImporters;Server=.;User ID=sa;Password=pass"))
 {
 try
 {
 await conn.OpenAsync();
 SqlCommand cmd = new SqlCommand("select o.OrderId, " +
 "c.CustomerName, o.OrderDate, o.PickingCompletedWhen, " +
 "sum(l.Quantity * l.UnitPrice) as OrderTotal " +
 "from Sales.Orders o " +
 "inner join Sales.Customers c on c.CustomerID = o.CustomerID " +
 "inner join Sales.OrderLines l on o.OrderID = l.OrderID " +
 "group by o.OrderId, c.CustomerName, o.OrderDate,
 o.PickingCompletedWhen " +
 "order by o.OrderDate desc", conn);

 var results = new List<Order>();
 using (SqlDataReader reader = await cmd.ExecuteReaderAsync())
 {
 while(reader.Read())
 {
 var order = new Order
 {
 Company = reader.GetString(1),
 OrderId = reader.GetInt32(0),
 OrderDate = reader.GetDateTime(2),
 OrderTotal = reader.GetDecimal(4),
 DatePicked = !reader.IsDBNull(3) ? reader.GetDateTime(3) :
 (DateTime?)null
 };
 results.Add(order);
 }
 return results;
 }
 }
 catch
 {
 return null;
 }
 }
}

public static async Task<IEnumerable<OrderItem>> GetOrderItemsAsync(
 int orderId)
{
 using (SqlConnection conn = new SqlConnection(
 "Database=WideWorldImporters;Server=.;User ID=sa;Password=pass"))
 {
 try
 {
 await conn.OpenAsync();
 SqlCommand cmd = new SqlCommand(
 "select Description,Quantity,UnitPrice " +
 $"from Sales.OrderLines where OrderID = {orderId}", conn);

 var results = new List<OrderItem>();
 using (SqlDataReader reader = await cmd.ExecuteReaderAsync())
 {
 while (reader.Read())
 {
 var orderItem = new OrderItem
 {
 Description = reader.GetString(0),
 Quantity = reader.GetInt32(1),
 UnitPrice = reader.GetDecimal(2),
 };
 results.Add(orderItem);
 }
 return results;
 }
 }
 catch
 {
 return null;
 }
 }
}

Figure 5 Code to Retrieve the Orders from the Database

public class Order : INotifyPropertyChanged
{
 public long OrderId { get; set; }
 public DateTime OrderDate { get; set; }
 public string Company { get; set; }
 public decimal OrderTotal { get; set; }
 public DateTime? DatePicked { get; set; }
 public bool Delivered => DatePicked != null;
 private IEnumerable<OrderItem> _orderItems;
 public event PropertyChangedEventHandler PropertyChanged;
 public IEnumerable<OrderItem> OrderItems
 {
 get => _orderItems;

 set
 {
 _orderItems = value;
 PropertyChanged?.Invoke(
 this, new PropertyChangedEventArgs("OrderItems"));
 }
 }

 public override string ToString() => $"{Company} {OrderDate:g} {OrderTotal}";
}

Figure 3 The Order Class

0118msdn_SonninoUWP_v3_56-63.indd 58 12/12/17 9:01 AM

Untitled-5 1 7/6/17 3:22 PM

http://www.SpreadsheetGear.com

msdn magazine60 Universal Windows Platform

huge number of APIs that were unavailable before, including SQL
Server client access and Entity Framework Core.

To make SQL Server client access available in your app, go to
the app properties and select Build 16299 as the Minimum Version
in the application tab. Then right-click the References node and
select “Manage NuGet packages” and install System.Data.SqlClient.

With that, you’re ready to access a local SQL Server database. One
note: the access isn’t made by using named pipes—the default
access method—but by using TCP/IP. So, you must run the SQL
Server Configuration app and enable TCP/IP connections for
your server instance.

I’ll also use the Telerik UI for UWP grid, now a free open source
product that you’ll find at bit.ly/2AFWktT. So, while you still have
the NuGet package manager window open, select and install the
Telerik.UI.for.UniversalWindowsPlatform package. If you’re add-
ing a grid page in WTS, this package is installed automatically.

For this app, I’ll use the WorldWideImporters sample database,
which you can download from bit.ly/2fLYuBk and restore it to your
SQL Server instance.

Now, you must change the default data access. If you go to the
Models folder, you’ll see the SampleOrder class, with this comment
at the beginning:

// TODO WTS: Remove this class once your pages/features are using your data.
// This is used by the SampleDataService.
// It is the model class we use to display data on pages like Grid, Chart,
and Master Detail.

There are a lot of comments throughout the project that give
guidance on what you need to do. In this case, you need an Order
class that’s very similar to this one. Rename the class to Order and
change it to something similar to the one in Figure 3.

This class implements the INotifyPropertyChanged interface,
because I want to notify the UI when the order items are changed
so I can load them on demand when displaying the order. I’ve
defined another class, OrderItem, to store the order items:

public class OrderItem
{
 public string Description { get; set; }
 public decimal UnitPrice { get; set; }
 public int Quantity { get; set; }
 public decimal TotalPrice => UnitPrice * Quantity;
}

The SalesViewModel, shown in Figure 4, must also be modified
to reflect these changes.

When the Selected property is changed, it will check whether the
order items are already loaded and, if not, it calls the GetOrder
ItemsAsync method in the data service to load them.

The last change in the code to make is in the SampleDataService
class, to remove the sample data and create the SQL Server access,
as shown in Figure 5. I’ve renamed the class to DataService, to
reflect that it’s not a sample anymore.

The code is the same you’d use in any .NET app; there’s no change
at all. Now I need to modify the list items data template in Sales
Page.xaml to reflect the changes, as shown in Figure 6.

I need to change the DataType so it refers to the new Order
class and change the fields presented in the TextBlocks. I must also
change the codebehind in SalesDetailControl.xaml.cs to load the
Items for the selected order when it’s changed. This is done in the
OnMasterMenuItemChanged method, which is transformed to
an async method:

private static async void OnMasterMenuItemChangedAsync(DependencyObject d,
 DependencyPropertyChangedEventArgs e)
{
 var newOrder = e.NewValue as Order;
 if (newOrder != null && newOrder.OrderItems == null)
 newOrder.OrderItems = await
 DataService.GetOrderItemsAsync((int)newOrder.OrderId);
}

<DataTemplate x:Key="ItemTemplate" x:DataType="model:Order">
 <Grid Height="64" Padding="0,8">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <StackPanel Grid.Column="1" Margin="12,0,0,0" VerticalAlignment="Center">
 <TextBlock Text="{x:Bind Company}" Style="{ThemeResource ListTitleStyle}"/>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{x:Bind OrderDate.ToShortDateString()}"
 Margin="0,0,12,0" />
 <TextBlock Text="{x:Bind OrderTotal}" Margin="0,0,12,0" />
 </StackPanel>
 </StackPanel>
 </Grid>
</DataTemplate>
<DataTemplate x:Key="DetailsTemplate">
 <views:SalesDetailControl MasterMenuItem="{Binding}"/>
</DataTemplate>

Figure 6 The List Items Data Template

<Grid Name="block" Padding="0,15,0,0">
 <Grid.Resources>
 <Style x:Key="RightAlignField" TargetType="TextBlock">
 <Setter Property="HorizontalAlignment" Value="Right" />
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="Margin" Value="0,0,12,0" />
 </Style>
 </Grid.Resources>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <TextBlock Margin="12,0,0,0"
 Text="{x:Bind MasterMenuItem.Company, Mode=OneWay}"
 Style="{StaticResource SubheaderTextBlockStyle}" />
 <StackPanel Orientation="Horizontal" Grid.Row="1" Margin="12,12,0,12">
 <TextBlock Text="Order date:"
 Style="{StaticResource BodyTextBlockStyle}" Margin="0,0,12,0"/>
 <TextBlock Text="{x:Bind MasterMenuItem.OrderDate.ToShortDateString(),
 Mode=OneWay}"
 Style="{StaticResource BodyTextBlockStyle}" Margin="0,0,12,0"/>

 <TextBlock Text="Order total:" Style="{StaticResource BodyTextBlockStyle}"
 Margin="0,0,12,0"/>
 <TextBlock Text="{x:Bind MasterMenuItem.OrderTotal, Mode=OneWay}"
 Style="{StaticResource BodyTextBlockStyle}" />
 </StackPanel>
 <grid:RadDataGrid ItemsSource="{x:Bind MasterMenuItem.OrderItems,
 Mode=OneWay}" Grid.Row="2"
 UserGroupMode="Disabled" Margin="12,0"
 UserFilterMode="Disabled" BorderBrush="Transparent"
 AutoGenerateColumns="False">
 <grid:RadDataGrid.Columns>
 <grid:DataGridTextColumn PropertyName="Description" />
 <grid:DataGridNumericalColumn
 PropertyName="UnitPrice" Header="Unit Price"
 CellContentStyle="{StaticResource RightAlignField}"/>
 <grid:DataGridNumericalColumn
 PropertyName="Quantity" Header="Quantity"
 CellContentStyle="{StaticResource RightAlignField}"/>
 <grid:DataGridNumericalColumn
 PropertyName="TotalPrice" Header="Total Price"
 CellContentStyle="{StaticResource RightAlignField}"/>
 </grid:RadDataGrid.Columns>
 </grid:RadDataGrid>
</Grid>

Figure 7 Changes in SalesDetailControl

0118msdn_SonninoUWP_v3_56-63.indd 60 12/12/17 9:01 AM

http://bit.ly/2AFWktT
http://bit.ly/2fLYuBk

61January 2018msdnmagazine.com

Next, I must change SalesDetailControl to point to the new fields
and show them, as shown in Figure 7.

I display the sales data in the top of the control and use a Telerik
RadDataGrid to show the order items. Now, when I run the applica-
tion, I get the orders on the second page, like what’s shown in Figure 8.

I still have the empty main page. I’ll use it to show a grid of all
customers. In MainPage.xaml, add the DataGrid to the content grid:

<grid:RadDataGrid ItemsSource="{Binding Customers}"/>

You must add the namespace to the Page tag, but you don’t need
to remember the syntax and correct namespace. Just put the mouse
cursor over RadDataGrid, type Ctrl+. and a box will open, indi-
cating the right namespace to add. As you can see from the added
line, I’m binding the ItemsSource property to Customers. The Data-
Context for the page is an instance of MainViewModel, so I must
create this property in MainViewModel.cs, as shown in Figure 9.

I’m loading the customers when the ViewModel is created. One
thing to notice here is that I don’t wait for the loading to complete.
When the data is fully loaded, the ViewModel indicates that the
Customers property has changed and that loads the data in the view.
The GetCustomersAsync method in DataService is very similar
to GetOrdersAsync, as you can see in Figure 10.

With that, you can run the app
and see the customers on the
main page, as shown in Figure 11.
Using the Telerik grid, you get a lot
of goodies for free: grouping, sort-
ing and filtering are built into the
grid and there’s no extra work to do.

Finishing Touches
I have now a basic LOB application,
with a customers grid and a mas-
ter-detail view showing the orders,
but it can use some finishing touches.
The icons in the lateral bar for both
pages are the same and they can be
customized. These icons are set in
the ShellViewModel. If you go there,
you’ll see these comments, which
point to where to go to change the
icons and the text for the items:

// TODO WTS: Change the symbols for each item as appropriate for your app
// More on Segoe UI Symbol icons:
// https://docs.microsoft.com/windows/uwp/style/segoe-ui-symbol-font
// Or to use an IconElement instead of a Symbol see
// https://github.com/Microsoft/WindowsTemplateStudio/blob/master/docs/
projectTypes/navigationpane.md
// Edit String/en-US/Resources.resw: Add a menu item title for each page

You can use font symbol icons (as in the actual code) or images
from other sources if you use IconElements. (You can use .png
files, XAML paths, or characters from any other fonts; take a look
at bit.ly/2zICuB2 for more information.) I’m going to use two symbols
from Segoe UI Symbol, People and ShoppingCart. To do that, I
must change the NavigationItems in the code:

_primaryItems.Add(new ShellNavigationItem("Shell_Main".GetLocalized(),
 Symbol.People, typeof(MainViewModel).FullName));
_primaryItems.Add(new ShellNavigationItem("Shell_Sales".GetLocalized(),
 (Symbol)0xE7BF, typeof(SalesViewModel).FullName));

For the first item, there’s already a symbol in the Symbol enumera-
tion, Symbol.People, but for the second there’s no such enumeration,
so I use the hex value and cast it to the Symbol enumeration. To
change the title of the page and the caption of the menu item, I
edit Resources.resw and change Shell_Main and Main_Title.Text
to Customers. I can also add some customization to the grid by
changing some properties:

<grid:RadDataGrid ItemsSource="{Binding Customers}"
UserColumnReorderMode="Interactive"
 ColumnResizeHandleDisplayMode="Always"
 AlternationStep="2" AlternateRowBackground="LightBlue"/>

Adding a Live Tile to the App
I can also enhance the application by adding a live tile. I’ll do so
by going to Solution Explorer, right-clicking the project node and
selecting Windows Template Studio | New feature, then choosing
Live Tile. When you click on the Next button, it will show the
affected tiles (both new ones and those that have been changed),
so you can see if you really like what you did. Clicking on the
Finish button will add the changes to the app.

Everything to add a Live Tile will be there, you just need to cre-
ate the tile content. This is already done in LiveTileService.Sam-
ples. It’s a partial class that adds the method SampleUpdate to

public class MainViewModel : ViewModelBase
{
 public ObservableCollection<Customer> Customers { get; private set; }

 public async Task LoadCustomersAsync()
 {
 var customers = await DataService.GetCustomersAsync();
 if (customers != null)
 {
 Customers = new ObservableCollection<Customer>(customers);
 RaisePropertyChanged("Customers");
 }
 }
 public MainViewModel()
 {
 LoadCustomersAsync();
 }
}

Figure 9 MainViewModel Class

Figure 8 Application Showing Database Orders

0118msdn_SonninoUWP_v3_56-63.indd 61 12/12/17 9:01 AM

http://msdnmagazine.com
http://bit.ly/2zICuB2

msdn magazine62 Universal Windows Platform

LiveTileService. As shown in Figure 12, I’ll rename the file to
LiveTileService.LobData and add two methods to it, Update
CustomerCount and UpdateOrdersCount, which will show in
the live tiles how many customers or orders are in the database.

UpdateSample was originally called in the initialization, in the
StartupAsync method of ActivationService. I’m going to replace
it with the new UpdateCustomerCount:

private async Task StartupAsync()
{
 Singleton<LiveTileService>.Instance.UpdateCustomerCount(0);
 ThemeSelectorService.SetRequestedTheme();
 await Task.CompletedTask;
}

At this point, I still don’t have the customer count to update.
That will happen when I get the customers in MainViewModel:

public async Task LoadCustomersAsync()
{
 var customers = await DataService.GetCustomersAsync();
 if (customers != null)
 {
 Customers = new ObservableCollection<Customer>(customers);
 RaisePropertyChanged("Customers");
 Singleton<LiveTileService>.Instance.UpdateCustomerCount(Customers.Count);
 }
}

The orders count will be updated when I get the orders in Sales-
ViewModel:

public async Task LoadDataAsync(MasterDetailsViewState viewState)
{
 var orders = await DataService.GetOrdersAsync();
 if (orders != null)
 {
 Orders = new ObservableCollection<Order>(orders);
 RaisePropertyChanged("Orders");
 Singleton<LiveTileService>.Instance.UpdateOrderCount(Orders.Count);
 }
 if (viewState == MasterDetailsViewState.Both)
 {
 Selected = Orders.FirstOrDefault();
 }
}

With that, I have an app as
shown in Figure 13.

This app can show the custom-
ers and orders retrieved from a
local database, updating the live
tile with the customers and order
counts. You can group, sort or fil-
ter the customers listed and show
the orders using a master-detail
view. Not bad!

Wrapping Up
As you can see, the UWP isn’t just
for small apps. You can use it for
your LOB apps, getting the data
from many sources, including a local
SQL Server (and you can even use
Entity Framework as an ORM). With
.NET Standard 2.0, you have access
to a lot of APIs that are already avail-
able in the .NET Framework, with
no change. WTS gives you a quick
start, helping you to quickly and
easily create an application using

public static async Task<IEnumerable<Customer>> GetCustomersAsync()
{
 using (SqlConnection conn = new SqlConnection(
 "Database=WideWorldImporters;Server=.;User ID=sa;Password=pass"))
 {
 try
 {
 await conn.OpenAsync();
 SqlCommand cmd = new SqlCommand("select c.CustomerID,
 c.CustomerName, " +
 "cat.CustomerCategoryName, c.DeliveryAddressLine2,
 c.DeliveryPostalCode, " +
 "city.CityName, c.PhoneNumber " +
 "from Sales.Customers c " +
 "inner join Sales.CustomerCategories cat on c.CustomerCategoryID =
 cat.CustomerCategoryID " +
 "inner join Application.Cities city on c.DeliveryCityID =
 city.CityID", conn);

 var results = new List<Customer>();
 using (SqlDataReader reader = await cmd.ExecuteReaderAsync())
 {
 while (reader.Read())
 {
 var customer = new Customer
 {
 CustomerId = reader.GetInt32(0),
 Name = reader.GetString(1),
 Category = reader.GetString(2),
 Address = reader.GetString(3),
 PostalCode = reader.GetString(4),
 City = reader.GetString(5),
 Phone = reader.GetString(6)
 };
 results.Add(customer);
 }
 return results;
 }
 }
 catch
 {
 return null;
 }
 }
}

Figure 10 GetCustomersAsync Method

Figure 11 Customers Grid with Grouping and Filtering

0118msdn_SonninoUWP_v3_56-63.indd 62 12/12/17 9:01 AM

63January 2018msdnmagazine.com

best practices with the tools you prefer, and to add Windows fea-
tures to it. There are great UI controls to enhance the appearance of
the app and the app will run in a wide range of devices: on a phone,

a desktop, the Surface Hub and even on HoloLens without change.
When it comes to deploying, you can send your app to the store

and have worldwide discovery, easy install and uninstall and auto
updates. If you don’t want to deploy
it through the store, you can do so
using the Web (bit.ly/2zH0nZY). As you
can see, when you have to create a
new LOB app for Windows, you
should certainly consider the UWP,
because it can offer you everything
you want for this kind of app and
more, with the great advantage that
it’s being aggressively developed and
will bring you a lot of improvements
for years to come.	 n

Bruno Sonnino has been a Microsoft Most
Valuable Professional (MVP) since 2007.
He’s a developer, consultant, and author,
having written many books and articles
about Windows development. You can fol-
low him on Twitter: @bsonnino or read his
blog posts at blogs.msmvps.com/bsonnino.

Thanks to the following Microsoft
technical expert who reviewed this
article: Clint RutkasFigure 13 The Finished App

Figure 12 Class to Update the Live Tile

internal partial class LiveTileService
{
 private const string TileTitle = "LoB App with UWP";

 public void UpdateCustomerCount(int custCount)
 {
 string tileContent =
 $@"There are {(custCount > 0 ? custCount.ToString() : "no")}
 customers in the database";
 UpdateTileData(tileContent, "Customer");
 }

 public void UpdateOrderCount(int orderCount)
 {
 string tileContent =
 $@"There are {(orderCount > 0 ? orderCount.ToString() : "no")}
 orders in the database";
 UpdateTileData(tileContent,"Order");
 }

 private void UpdateTileData(string tileBody, string tileTag)
 {
 TileContent tileContent = new TileContent()
 {
 Visual = new TileVisual()
 {
 TileMedium = new TileBinding()
 {
 Content = new TileBindingContentAdaptive()
 {
 Children =
 {
 new AdaptiveText()
 {
 Text = TileTitle,
 HintWrap = true
 },
 new AdaptiveText()
 {

 Text = tileBody,
 HintStyle = AdaptiveTextStyle.CaptionSubtle,
 HintWrap = true
 }
 }
 }
 },

 TileWide = new TileBinding()
 {
 Content = new TileBindingContentAdaptive()
 {
 Children =
 {
 new AdaptiveText()
 {
 Text = $"{TileTitle}",
 HintStyle = AdaptiveTextStyle.Caption
 },
 new AdaptiveText()
 {
 Text = tileBody,
 HintStyle = AdaptiveTextStyle.CaptionSubtle,
 HintWrap = true
 }
 }
 }
 }
 }
 };
 var notification = new TileNotification(tileContent.GetXml())
 {
 Tag = tileTag
 };

 UpdateTile(notification);
 }
}

0118msdn_SonninoUWP_v3_56-63.indd 63 12/12/17 9:01 AM

http://msdnmagazine.com
http://bit.ly/2zH0nZY
http://twitter.com/bsonnino
http://blogs.msmvps.com/bsonnino

msdn magazine64

A lot has changed in the IT world since
the mid-1990s, yet MSDN Magazine—
or more accurately, its progenitors
Microsoft Systems Journal (MSJ) and
Microsoft Interactive Developer (MIND)—
were there, informing developers of the
latest tools, techniques and technologies
they needed to get ahead in the world
of Windows programming.

The idea of writing for either of these
publications was at the time a dream. I had
always been fascinated by writing, going
back to my high school years in a small
beach-front home on the eastern coast
of central Italy. In an era where e-mail
seemed to suddenly give everybody the
chance to talk to nearly anyone, I worked
up the courage to propose technical
articles to prestigious magazines like Dr.
Dobb’s Journal. By 1996 I was a published
author, but I still hadn’t written for either
Microsoft magazine.

That all changed when I came
across a column called “The Visual
Programmer” in MSJ. At the time I was the epitome of the “real”
programmer, doing pointer-based stuff in raw C without even the
thin protections of the emerging C++ language. I used to look with
suspicion on things like Microsoft Foundation Classes (MFC),
which seemed designed to shield lazy developers from the harsh
realities of programming. I didn’t think highly of those doing
“visual” development.

Then, in the October 1996 issue of MSJ, I read a column that
boldly claimed to teach readers the way to add VBScript to their
existing apps. The author, Josh Trupin, started by apologizing for
having missed the last couple issues due to a new role he’d taken
at Microsoft. “If you’ve written to me and I haven’t sent you a
reply, it’s not because I’m ignoring you. It’s because I’m busy and
I’m ignoring you,” he wrote.

I was impressed with the article, but felt also that I was every
bit as sharp as the author. If he could write a column for MSJ, why
not me? So I contacted Josh to praise his work, only to learn that
he had just assumed the role of technical editor at MIND. It didn’t
take me long to offer to write for him.

The Inception of
a Digital Friendship
Josh and I started collaborating right
after that, and we’ve remained friends
ever since. The first article I wrote for
him was published in the June 1997
issue of MIND (Figure 1). A few months
later in January I published what would
be the first of many Cutting Edge col-
umns, initially in MIND and later in
MSDN Magazine.

Now, exactly 20 years after my first
Cutting Edge installment, I wanted to
take a moment to look back at the last
two decades. And what better way to do
that, than to rope in my old friend and
colleague Josh Trupin to provide some
perspective. Here’s our conversation.

Dino Esposito: Josh, do you remem
ber my first article in the June 1997
issue of MIND?

Josh Trupin: I remember you send-
ing me so many e-mails that I couldn’t
just ignore you. But, yes, I really enjoyed

your first article ever. What was it? CryptoAPI, right?
Dino: Right. I still have a paper copy of the magazine. I liked

it so much (well, I especially liked the check) that I wanted to get
working on a second article right away. But getting a response
from you was hard! You then told me you had been lame on replies
because of your dentist.

Josh: Really? Well, you were more painful than him.
Dino: That’s why you gave me the Cutting Edge column?
Josh: Not really. John Grieb had just started writing a new col-

umn called Cutting Edge in the November 1997 issue, but after
the first article he resigned and I needed to find a replacement.
Giving you the column solved two problems with a single move.

Dino: My first column dates back to January 1998. I think it was
on something called Active Scripting.

Josh: Your memory is better than mine. You’re really able to recall that?
Dino: Well, 1998 was a memorable year. In February I joined

the first big company in my career. In May my son Francesco was
born. In September I left the last big company in my career and
decided that I could spend my life writing and coding.

20 Years of Cutting Edge:
A Conversation

Cutting Edge DINO ESPOSITO

Figure 1 Dino’s First Article in the Contents Page
of Microsoft Interactive Developer

0118msdn_EspositoCEdge_v3_64-66.indd 64 12/12/17 8:53 AM

65January 2018msdnmagazine.com

Josh: Your son should be a man now. Does he do any programming?
Dino: He does, actually. He wrote his first mobile app when he

was 12 years old, for Windows Phone. He even got a free device
from Microsoft.

Josh: Amazing!
Dino: Well, I’ve been doing pair programming for quite some

time, and with some success I’d add. You see the picture of my son
playing on the computer (Figure 2)? There’s an old copy of MIND
in there about e-mails. I was actually reading that magazine cover
to cover. I always had it around.

Josh: Does Francesco have more programs planned for the
years to come?

Dino: He has a math mind and loves esoteric things like neural
networks and quantum computing. To my great surprise, the other
day he mentioned that he has two goals at this stage of his life. One
is to meet Scott Guthrie in person. He can’t believe that a demigod
like a Microsoft vice president could really have any memory of me.
He also can’t believe that there was a time when I was more popular
than Scott! I met Scott for the first time back in 1999 when he was
unveiling an antediluvian thing called ASP+.

Josh: And the other desire?
Dino: Joining Michael Freedman’s team at Microsoft.
Josh: Awesome. And what’s that, exactly?
Dino: Michael Freedman is the brains behind the quantum

computing effort at Microsoft.
Josh: I heard about Microsoft’s quantum computing work at the

Ignite conference, but it seems rather futuristic to me.
Dino: Well, I find it excitedly scary. For example, quantum com-

puting could make affordable exponential calculations that today
guarantee data privacy in crucial transactions. Have you ever
realized that most of our stuff is secured by the unknown binding
between a pair of lovely prime numbers?

Josh: Call me romantic, but I wish I could go back to the early
days of scripting.

Dino: You could do a lot of JavaScript today!
Josh: Yeah, but even JavaScript is no longer the thing it was 20

years ago. But it did manage to survive while scary three-letter acro-
nyms like OLE and COM went the way of the dinosaurs. What was
the weirdest thing you wrote about in your 20 years of columns?

Dino: Well, in 20 years there have been plenty of technologies
I covered that in the end were fated not to last. One I recall is
ActiveX Documents, the technology to edit Word and other files
in a browser. Another is Silverlight, which was furiously evange-
lized for a few years before being dropped. Perhaps worst of all,
I repeatedly assured people that ASP.NET themes were about to
overtake CSS stylesheets in a very short time. Oops.

Josh: You survived. I mean, 20 years of technical writing is a
long time. We were two old men of 30 back in 1998, and we’re two
old men of 50 today. What do you see today in front of the current
generation of old men of 30?

Dino: Interesting question. I see the next decade as the comeback
of algorithms and modeling over pure technology and tools. Look
at artificial intelligence (AI), for example. Sure, Microsoft is giving
us wonderful tools like bots and Cognitive Services, and maybe
enterprise-level Blockchain protocols in the near future. To make

AI in the real world, to make it scale from the level of cool demos
and articles to the real world, we need to learn about problems
and problem domains. We need to learn how to build effective AI
architectures, which, in essence, is understanding and modeling
problems onto abstract structures. It seems to be an executive
summary of the operational research exam when I was at college.

Today, we have big amounts of data but only run raw, stupid,
brute-force algorithms on it. We have neural networks that still
largely rely on the principles of Bayesian statistics, which were
formulated back in the 18th century, over two centuries ago. We
have a lot ahead of us, but most of it is still hidden.

Josh: Let’s get back to planet Earth. How is your family? You
also have a daughter, right?

Dino: The funny thing is that I got married when Microsoft
released Windows 95, had my first son when Windows 98 was on
its way, and our daughter was born around the time that Windows
2000 shipped.

I see the next decade as
the comeback of algorithms

and modeling over pure
technology and tools.

Figure 2 My Dad Is Not That Good with Computers

0118msdn_EspositoCEdge_v3_64-66.indd 65 12/12/17 8:53 AM

http://msdnmagazine.com

Cutting Edge

dtSearch.com 1-800-IT-FINDS

 The Smart Choice for Text Retrieval®

since 1991

dtSearch’s document filters support
popular file types, emails with multilevel
attachments, databases, web data

Developers:
• APIs for .NET, Java and C++
• SDKs for Windows, UWP, Linux,

Mac and Android
• See dtSearch.com for articles on

faceted search, advanced data
classification, working with SQL,
NoSQL & other DBs, MS Azure, etc.

Visit dtSearch.com for
• hundreds of reviews and case studies
• fully-functional evaluations

Instantly Search
Terabytes of Data
across a desktop, network, Internet or
Intranet site with dtSearch enterprise
and developer products

®

Over 25 search features, with easy
multicolor hit-highlighting options

Josh: So you’re on Linux now or you’re still upgrading your
editions of Windows?

Dino: Haha. I just disabled automatic updates. No more kids
for me, thanks.

Josh: Me too.
Dino: When was the last time we met? It’s been a “long time,

no see” kind of thing.
Josh: We didn’t meet more than two or three times, I think. Then

I left the magazine and a lot has happened since. But it’s great to see
that MSDN Magazine is still alive and kicking, putting out great
content, even in the era of blogs and StackOverflow and Google.

Dino: When we started the Cutting Edge column, digital pho-
tography was in its infancy, Google was in beta, and smartphones
were the stuff of science fiction. At the same time, the amount of
knowledge needed to be a good professional has grown unbeliev-
ably. One could spend the weekend in the office—I did it a few
times—bent over a collection of MSDN CDs, and on Monday be
up-to-date on the state-of-the-art of Windows technology.

Today’s knowledge base is like CosmosDB compared to
Microsoft Access. The way developers gain access to technical
information has changed, but being quick-to-find information is
not the same as learning, or getting acquainted with, a new tech-
nology or a framework.

Josh: Is this the reason why you still write articles?
Dino: I write because I love writing. It also helps that I probably

have a knack for abstracting core facts and concepts and conveying
them in compelling and useful ways.

Josh: What was your best article ever?
Dino: I can’t recall all the articles I wrote, but I remember the

days of ASP.NET 2.0 as being very exciting. That was during the
first half of the 2000s. More recently, I loved writing about event
sourcing and CQRS (msdn.com/magazine/mt185569).

Josh: What will you never forget from these 20 years of Cutting Edge?
Dino: The e-mails we exchanged the morning (actually, my

afternoon) of 9/11. I was not watching TV, just listening to the
radio and one of your e-mails told me a couple of minutes before
the radio that the towers had collapsed.

Josh: What’s in store for the next 20 years of Cutting Edge?
Dino: AI in some way, I guess, but not sure which way yet. Since

1998 we’ve seen the advent of the Internet as a first-class developer
platform, the rise of scalability as a problem, and the evolution
of serious SQL and then NoSQL databases. We saw the browser
evolve from a target for simple JavaScript development into some-
thing more. Developers began writing browser-based Web apps in
Silverlight, then in C#, and then in JavaScript again. On the data
front we went from plain data access to object/relational mapping
(ORM) and now toward micro ORM.

Those who start with computers today should be aware that pro-
gramming languages are like any tool. Handling it well helps, but
you can only do a good job if you know how and where to use it.	n

Dino Esposito is the author of “Microsoft .NET: Architecting Applications for
the Enterprise” (Microsoft Press, 2014) and “Programming ASP.NET Core”
(Microsoft Press, 2018). Pluralsight author and developer advocate at JetBrains,
Esposito shares his vision of software on Twitter: @despos.

0118msdn_EspositoCEdge_v3_64-66.indd 66 12/12/17 8:53 AM

www.dtSearch.com
http://msdn.com/magazine/mt185569
www.twitter.com/despos

VISUAL STUDIO LIVE! (VSLive!™) is celebrating 25 years as one of the most respected, longest-standing,
independent developer conferences, and we want you to be a part of it. Join us in 2018 for #VSLive25, as we
highlight how far technology has come in 25 years, while looking toward the future with our unique brand of
training on .NET, the Microsoft Platform and open source technologies in seven great cities across the US.

SUPPORTED BY

magazine

PRODUCED BY vslive.com

#VSLIVE25

HELP US CELEBRATE #VSLIVE25.
WHICH LOCATION WILL YOU ATTEND IN 2018?

Orlando

San Diego

Chicago

Redmond

Boston

Austin

Las Vegas

APRIL 30 – MAY 4
Hyatt Regency Austin

JUNE 10 – 14
Hyatt Regency Cambridge

AUGUST 13 – 17
Microsoft Headquarters

MARCH 11 – 16
Bally’s Hotel & Casino

Respect the Past.
Code the Future.

Code Like It’s 2018!

Developing
Perspective.

Yesterday’s Knowledge;
Tomorrow’s Code!

SEPTEMBER 17 – 20
Renaissance Chicago

Look Back to
Code Forward.

OCTOBER 7 – 11
Hilton San Diego Resort

Code Again for
the First Time!

DECEMBER 2 – 7
Loews Royal Pacifi c Resort

Code Odyssey.

CONNECT WITH US

linkedin.com – Join the
“Visual Studio Live” group!

facebook.com – Search “VSLive”

twitter.com/vslive – @VSLive

Untitled-6 1 12/11/17 12:42 PM

www.vslive.com
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

VSLive! 2017

SUPPORTED BY

magazine

PRODUCED BY

We’re Gonna Code Like It’s 2018
Visual Studio Live! (VSLive!™) is back in Austin this spring with 5 days of
practical, unbiased, Developer training. From April 30 – May 4, 2018, join
us for hard-hitting sessions, insightful workshops, intense hands-on labs
and fun networking events. Code with industry experts, hear the latest
from Microsoft insiders and tune up on today’s hottest training topics!
Plus, help us celebrate 25 years of coding innovation as we take a fun
look back at technology and training since 1993. Come experience the
education, knowledge-share and networking at #VSLive25.

VSLive! 1999

April 30 – May 4, 2018
Hyatt Regency Austin, TX

Austin

Untitled-6 2 12/11/17 12:42 PM

www.vslive.com/austinmsdn

vslive.com/austinmsdnCONNECT WITH US

linkedin.com – Join the
“Visual Studio Live” group!

facebook.com –
Search “VSLive”

twitter.com/vslive –
@VSLive

VS2017/.NET JavaScript / Angular Xamarin Software Practices Database & Analytics

ASP.NET / Web Server ALM / DevOps Azure / Cloud UWP (Windows) Hands-On Labs

DEVELOPMENT TOPICS INCLUDE:

Register to code with us today!
Register Now and Save $300!
Use promo code VSLJAN2

April 30 – May 4, 2018
Hyatt Regency Austin, TX

Austin

“ I have been looking forward to attending the event for some years and

I was fi nally able to come. I need to help keep my company current and

secure. I am advocating for more test-driven dev and using more async

as a resulting of attending the conference!”

– Yessenia Figueroa, 1-800-Contacts

“ This is my second year attending Visual Studio Live! I want to come

back year over year because the variety of sessions allow me to deep

dive into tech that I use on a daily basis, but the option is there to

explore something new. The biggest dev improvement I made last year

was from the great hands-on experience I got with SignalR at VSLive!”

– Jake Clauson, Washington Technology Solutions

BACK BY
POPULAR
DEMAND

Untitled-6 3 12/11/17 12:42 PM

www.vslive.com/austinmsdn
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

SUPPORTED BY

magazine

PRODUCED BY

Developing Perspective
Visual Studio Live! (VSLive!™) returns to Boston, June 10 – 14, 2018, with
5 days of practical, unbiased, Developer training, including NEW intense
hands-on labs. Join us as we dig into the latest features of Visual Studio
2017, ASP.NET Core, Angular, Xamarin, UWP and more. Code with industry
experts AND Microsoft insiders while developing perspective on the
Microsoft platform. Plus, help us celebrate 25 years of coding innovation
as we take a fun look back at technology and training since 1993. Come
experience the education, knowledge-share and networking at #VSLive25.

June 10-14, 2018
Hyatt Regency, Cambridge, MA

Boston

VSLive! 2001 VSLive! 2017

Untitled-6 4 12/11/17 12:42 PM

www.vslive.com/bostonmsdn

vslive.com/bostonmsdnCONNECT WITH US

linkedin.com – Join the
“Visual Studio Live” group!

facebook.com –
Search “VSLive”

twitter.com/vslive –
@VSLive

VS2017/.NET JavaScript / Angular Xamarin Software Practices Database & Analytics

ASP.NET / Web Server ALM / DevOps Azure / Cloud UWP (Windows) Hands-On Labs

DEVELOPMENT TOPICS INCLUDE:

Register to code with us today!
Register Now and Save $300!
Use promo code VSLJAN2

“ I have attended 12+ Visual Studio Live events, starting with the early

days of VBITS and C# Live. I return every year because no one refl ects

and enhances what is currently happening in and with Microsoft’s

developer world like VSLive! I honestly trust and enjoy all the speakers

I look to them as both mentors and old friends!”

– John Kasarda, Accuquote

“ Last year, I got so much out of the SOLID principle sessions – it gave

me great perspective on the subject. This year, I loved the HoloLens

introduction. I work for an aerospace company, and I can see that the

technology will be utilized for assembly, 3D design, 3D inspection and

many other applications in the near future!”

– Mani Nazari, IT Factory Automation Systems

NEW!

Untitled-6 5 12/11/17 12:43 PM

www.vslive.com/bostonmsdn
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine72

In my November 2017 column about duct tape (msdn.com/magazine/
mt845623), I promised you a follow-up piece on duct tape’s polar
opposite. Herewith my ruminations on the all-purpose penetrat-
ing lubricant WD-40 (wd40.com), and its application to software.

As duct tape can stick almost anything together, WD-40 can get
almost anything apart. You’ll find them nestled next to each other
in almost every toolbox in the world. This confluence is celebrated
in song, see bit.ly/2hW4IOy and bit.ly/2BjLvhz.

Our applications use duct tape internally, where the user can’t see
it—lots and lots of duct tape. But the external functionality of our
most successful software owes more to WD-40. Our apps rarely
invent something completely new. What we usually do is reduce
the friction of existing operations, as WD-40 reduces the friction
of mechanical parts.

Consider Uber, the much-maligned but much-much-used ride
hailing service. Uber isn’t doing anything conceptually new. New
York City has had radio-dispatched car services for as long as it’s
had radios and cars: call 777-7777 and you get Dial 7’s car service;
call 666-6666 and you get Carmel’s. The same business structure
applies: drivers own their cars and do the driving; the central ser-
vice handles marketing, booking and payment. Similar operations
exist in many other cities.

How has Uber reduced the friction of this process? With Uber,
you summon a ride without talking to a live person. The younger
generation especially prefers this, and it’s one less body Uber
needs to hire; lowering costs permanently once you get the code
written. The app remembers your most frequent destinations,
offering them at a single tap. You don’t need to find a new car
service in each city you visit, the same app works almost every-
where. You don’t have to describe or even know your location in
a strange city, the app takes care of that. You don’t have to visit an
ATM for cash, or even take out your credit card; the service han-
dles all of that. The driver doesn’t need an expensive radio console
to participate, just the smartphone she probably already carries. A
good squirt of WD-40 on all the joints limbers up a service that is
pulverizing the competition.

Now consider Amazon. It’s not doing anything conceptually that
Sears didn’t do with their mail-order operation a hundred years
ago, but Amazon is drastically lowering friction and hammering
Sears. Amazon’s Web site is easier to distribute and update than
the Sears paper catalog. Items are easier to find with a search box
than a paper index. Amazon’s 1-Click Order button is much easier

than filling out and snailing a paper order form with a paper check.
And customers no longer have to wait a week or longer for the
Wells Fargo Wagon to deliver their orders, holding a town parade
when it arrives, as they did in “The Music Man” (straight version
at bit.ly/2AaVng8, spoof at bit.ly/2ACLSYa).

Amazon has dumped a barrel of WD-40 into all aspects of the
retail process, lowering the friction nearly to zero. I had to turn
1-Click off because I was buying too much stuff. Amazon founder
Jeff Bezos became the world’s richest man in late October. “The
Music Man” song will soon need rewriting: “Oh, the Amazon drone
is a-flying down the street …”

We should use more WD-40 in designing software. Maybe, in
addition to posters displaying our target user personas, we should
display big spray cans of WD-40 around the lab as an inspiration
to ask ourselves, “How can we lower friction even more?” For
example, the auto-save in One Note has lower friction than manual
saving in Word. The automatic disk backup of Carbonite has much
lower friction than backing up data yourself. Amazon’s patent on
1-Click ordering expired last fall (see bit.ly/2jq9YdC), so I expect to see
many companies start using it. Sears, on the other hand, brought
back their paper catalog this Christmas (cnnmon.ie/2zCHS62), betting
that nostalgia could bring back buyers. I’m betting it was the last
Christmas for Sears as a going concern.

The night before code freeze, we shouldn’t be trying to cram in
one more feature for our few power users. We should be trying to
lower the friction for everyone. We should be asking ourselves,
“Where else in this process can we spray WD-40?” 	 n

David S. Platt teaches programming .NET at Harvard University Extension
School and at companies all over the world. He’s the author of 11 programming
books, including “Why Software Sucks” (Addison-Wesley Professional, 2006)
and “Introducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named
him a Software Legend in 2002. He wonders whether he should tape down two
of his daughter’s fingers so she learns how to count in octal. You can contact him
at rollthunder.com.

WD-40

Don’t Get Me Started DAVID S. PLATT

As duct tape can stick almost
anything together, WD-40 can

get almost anything apart.

0118msdn_PlattDGMS_v3_72.indd 72 12/12/17 9:00 AM

http://msdn.com/magazine/mt845623
http://msdn.com/magazine/mt845623
http://wd40.com
http://bit.ly/2hW4IOy
http://bit.ly/2BjLvhz
http://bit.ly/2AaVng8
http://bit.ly/2ACLSYa
http://bit.ly/2jq9YdC
http://cnnmon.ie/2zCHS62
http://rollthunder.com

| Developer Solutions

.NET UI CONTROLS REPORTING SOLUTIONS SPREADSHEET SOLUTIONS JAVASCRIPT UI CONTROLS

© 2018 GrapeCity, Inc. All rights reserved. All other product and brand names are trademarks and/or registered trademarks of their respective holders.

Learn more and get free 30-day trials at GrapeCity.com
For more information: 1-800-831-9006

Empower your development.
Build better applications.
GrapeCity’s family of products provides developers, designers, and architects with the
ultimate collection of easy-to-use tools for building sleek, high-performing, feature-complete
applications. With over 25 years of experience, we understand your needs and offer the
industry’s best support. Our team is your team.

* Offer applies to products in ComponentOne, ActiveReports, Spread, and Wijmo lines. To take advantage of the offer, the promo code should be
applied in the cart at checkout. Offer excludes ActiveReports Server, distribution licenses, volume discount packs, and add-on support/maintenance.
Not to be combined with other offers. Other restrictions may apply.

Untitled-1 1 12/12/17 11:29 AM

www.GrapeCity.com

Faster Paths to
Amazing Experiences

To speak with our sales team or a solutions consultant call 1.800.231.8588

For a free trial or demo, visit Infragistics.com

Prototype
Get it right the fi rst time.
Design, prototype and
test usability remotely.
With Indigo Studio

Develop
Automate and accelerate
your development with
powerful UI controls for
web, desktop and mobile
development.
With Infragistics Ultimate

Drive Insights
Make your apps shine with
aff ordable and powerful
integrated analytics.
With ReportPlus Embedded

Untitled-1 1 12/13/17 10:51 AM

www.infragistics.com

	Back
	Print
	MSDN Magazine, January 2018
	Cover Tip
	Front
	Back

	Contents
	FEATURES
	All About Span: Exploring a New .NET Mainstay
	Extend Excel Formulas for Data Analysis
	Build the API to Your Organization with Microsoft Graph and Azure Functions
	What’s New for .NET UWP Development?
	Creating a Line-of-Business App with the UWP

	COLUMNS
	UPSTART: Crisis of Confidence
	DATA POINTS: Creating Azure Functions to Interact with Cosmos DB
	ARTIFICIALLY INTELLIGENT: Creating Models in Azure ML Workbench
	CUTTING EDGE: 20 Years of Cutting Edge: A Conversation
	DON’T GET ME STARTED: WD-40

	Visual Studio Live!, Las Vegas - Insert

